
PAChain: Private, Authenticated
& Auditable Consortium Blockchain ?

Tsz Hon Yuen

The University of Hong Kong, Hong Kong
thyuen@cs.hku.hk

Abstract. Blockchain provides a distributed ledger recording a globally agreed, immutable
transaction history, which may not be suitable for Fintech applications that process sensitive
information. This paper aims to solve three important problems for practical blockchain
applications: privacy, authentication and auditability.
Private transaction means that the transaction can be validated without revealing the trans-
action details, such as the identity of the transacting parties and the transaction amount.
Auditable transaction means that the complete transaction details can be revealed by au-
ditors, regulators or law enforcement agencies. Authenticated transaction means that only
authorized parties can be involved in the transaction. This functionality is especially im-
portant to use with auditability: even if the auditor can extract the public key used in a
transaction, he can do nothing if the public key is not associated with a registered user in
the system. In this paper, we present a private, authenticated and auditable consortium
blockchain, using a number of cryptographic building blocks.

Keywords: Blockchain · privacy.

1 Introduction

Blockchain is a fast-growing field of technology since it is recognized as the core component of
Bitcoin [13]. Blockchain can serve as a distributed ledger in a peer-to-peer network to provide
publicly verifiable data. Blockchain can be mainly classified into three categories: public, private
and consortium blockchain. The public blockchain is an open, permissionless system such that
every one is allowed to join as a user or miner freely. Bitcoin and most cryptocurrencies falls into
this category. Public blockchain is suitable for decentralized network without trusted authority.
However, they usually have limited throughput. The private blockchain is a closed, permissioned
system such that a user must be validated in order to use the system. It is a traditional centralized
system with auditability attached. The consortium blockchain is a partly private blockchain. The
submission of transactions can be performed by many (authorized) users, but the verification of
transactions is only permitted by a few predetermined parties. Consortium blockchain provides
a higher efficiency (more than 10K transactions per second (tps)) than the public blockchain,
without consolidating power with a single party as the private blockchain. Consortium blockchain
is suitable for organizational collaboration.

Consortium blockchain received a great interest from the industry due to the similarity with
the existing business model, especially in the finance industry. Hyperledger, an umbrella project
of open source consortium blockchain, has 130 members including members from the IT industry
(e.g., IBM, Intel) and the financial industry (e.g., JP Morgan, American Express).

Privacy in Blockchain. Privacy is important for commercial system, especially in the financial
sector where money is transferred from one party to another. No one would like to have his bank
account transaction history posted on a public blockchain. We define three key privacy properties
that we want to achieve in this paper:

1. Sender Privacy: the sender’s identity is not known by any third party and two valid transactions
of the same sender should not be linked.

? This is the full verion of the paper in CANS 2019 [19].

Sender Recipient Transaction Auditability Authentication Efficiency
Privacy Privacy Privacy

Public
blockchain

Monero/RingCT-
based solutions

Zcash/zk-SNARK-
based solutions

DAP [10]

Consortium/
Private

blockchain

R3 Corda, [12],
Hyperledger Fabric

Fabric experiment

PRCash[18]

This paper

Table 1. Comparison with Existing Privacy-Preserving Blockchain Schemes

2. Recipient Privacy: the recipient’s identity is not known by any third party and two valid trans-
actions of the same recipient should not be linked.

3. Transaction Privacy: the content of the transaction is not known by any third party. Gen-
eral transaction privacy for smart contract is difficult to achieve without using general zero-
knowledge proof of circuit or fully homomorphic encryption, which are both not quite practical.
In this paper, we only consider the privacy for transaction amount.

The above conditions should hold for any third party (including the parties running the consensus
algorithm). Cryptocurrencies such as Monero and Zcash offer privacy in the public blockchain.
There are also a number of academic and industrial solutions for privacy-preserving consortium
blockchain. Details will be discussed in §3.1.

Our Contributions: Privacy, Authenticated & Auditable in Consortium Blockchain.
Auditability is essential for financial blockchain applications and unconditional anonymity may
not be desirable. Financial institution has to undertake both internal and external audit for check-
ing if there is any money laundering or terrorist-related activities, under regulations from the
government. Auditing is usually performed by sample checking of all transaction records. In case
of court order, the institute has to provide the complete information of a particular transaction
to the court. For all of the above situations, the privacy of certain transaction has to be revoked
if necessary. For simplicity, we denote the party to legally revoke privacy as the auditor.

Authentication is important for consortium blockchain in two aspects. First, the consortium
companies need to ensure that the user is authenticated to use the system (e.g., he has paid/subscribed
for the blockchain service). The consortium companies do not earn from the “mining” process and
no new coin is generated from consortium blockchain. Second, authentication is useful for tracing
real user identity during the auditing process. If users can transact in the consortium blockchain
without registration, then the auditor can only discover the self-generated public key after opening
the transaction. The real world identity can only be recovered if the user was registered before
and is authenticated during the transaction.

In this paper, we show how to construct a private, authenticated and auditable consortium
blockchain: PAChain. We give the sender privacy, recipient privacy and transaction privacy by
three separate modules. Auditability is provided for all three modules. Authentication is analyzed
for the sender privacy and recipient privacy modules. It allows us to analysis the security of each
module clearly. It gives the flexibility for system architects to choose the properties according to the
business requirements. Therefore, our construction is suitable to be deployed in real world business
use cases. In our construction, we use a number of cryptographic techniques (e.g., anonymous
credential, zero-knowledge range proof, additive homomorphic encryption) and modify them for
higher efficiency in consortium blockchain. Table 1 gives the comparison of our paper and related
works described in §3.1.

2

2 PAChain Overview

In this paper, we show the high level overview of how to achieve privacy and auditability in
consortium blockchain.

2.1 System Model

In blockchain system, clients can submit transactions (Tx) to nodes running the consensus algo-
rithms. The nodes validate the Tx and add it to a block. In this paper, we extend the system
model of Hyperledger Fabric 1.0 1, which is designed for consortium blockchain. The system hosts
smart contracts (called chaincode in Hyperledger Fabric) that comprise the application logic of
the system. Chaincode holds state and ledger data, and transactions are operations invoked on
the chaincode. Transactions have to be endorsed by endorsers and only endorsed Txs can be
committed.

There are five types of nodes in PAChain:

1. Client: A client invokes a Tx to the endorsers, and also broadcasts the transaction-proposals
to the orderer.

2. Peer: There are two types of peers. Endorser checks the validity of the Tx submitted by the
client. Committing peers commits Txs and maintains the ledger. Note that a peer can play the
role of endorser and committing peers at the same time.

3. Orderer: A node running the service of ordering Txs. Consensus algorithm is run between many
orderers.

4. Auditor: The auditor can recover the sender identity, recipient identity and/or the Tx amount
of any transaction.

5. Certificate Authority(CA): CA issues certificate for the public key of clients. Only authorized
party can be involved in a Tx.

Besides the endorsement and consensus services, Hyperledger Fabric also support membership
service. It can restrict clients that must be authorized by a membership service provider in order
to create a transaction. Ledger provides a verifiable history of all successful (and also unsuccessful)
state changes, occurring during the operation of the system. Ledger is constructed by the orderer
as a totally ordered hash-chain of blocks of (valid or invalid) Txs. Each block contains a set of
totally ordered Txs. The ledger is distributed in the system and can be accessed by any nodes.

UTXO Model for Digital Assets. The model of Unspent Transaction Outputs (UTXO) is used
in many blockchain systems, such as Bitcoin. If a user wants to spend his digital assets in a Tx,
he has to refer to the specific assets that he wants to spend. If he spends the same asset twice, the
verifier will notice it and will reject the Tx. In this paper, we consider the general UTXO model
for digital assets and provides anonymity for their transactions.2

Transaction Workflow. Assume that the client obtains a certificate from the CA. The basic
workflow of a transaction (Tx) is as follows:

1. The client creates a signed Tx and sends it to endorser(s) of its choice.
2. Each endorser validates a Tx and produces an endorsement signature.
3. The submitting client collects endorsement(s) for a Tx and broadcasts it to the orderers.
4. The orderers deliver the block of ordered Txs to all peers.
5. The committing peer checks if every ordered Tx is endorsed correctly according to some policy.

It also removes double-spending Tx endorsed by different endorsers concurrently (only the first
valid Tx is accepted). If the checking is correct, it commits Txs and maintains the state and
a copy of the ledger.

The auditor can recover the sender identity, recipient identity and the transaction amount of the
Tx if necessary.

1 Hyperledger Fabric Architecture Explained. http://hyperledger-fabric.readthedocs.io/en/latest/arch-
deep-dive.html

2 Hyperledger Fabric 1.0 currently uses the account balance model by default, but it also supports the
UTXO model.

3

Fig. 1. Nodes and Workflow of PAChain

2.2 High-Level Description of PAChain

We briefly describe how we can achieve privacy and auditability in our PAChain. We provide three
privacy properties in three different modules. It accommodates the plug-and-play design principle
of Hyperledger Fabric, where system architects can choose the modules according to their concrete
requirement. Generally speaking, we use the semi-trusted setting of consortium blockchain to set
up system parameters and user credentials. Then, we can achieve a more efficient solutions for
privacy and auditability, as compared to public blockchain (where all nodes may have Byzantine
faults).

Sender Privacy: It is achieved by the sender Alice using anonymous credential in Step 1 of the
workflow. The credential is issued by the endorser of the last corresponding Tx received by Alice,
to ensure that she is authenticated. We have to add a tag (which is a deterministic function of
the user secret key) to the signature in Step 1 in order to detect double spending. Our method is
more efficient than the linkable ring signature approach in Monero and the zk-SNARKs approach
in Zcash. We take advantage of having some semi-trusted endorsers in our framework, which can
act as the group manager of anonymous credential. It provides sender anonymity for all users
using the same endorser (see §6.2). This anonymous credential approach is more efficient the ring
signature-based approach in Monero and zk-SNARK-based approach in Zcash.

Recipient Privacy: It is achieved by generating one-time ephemeral key via Diffie-Hellman protocol
between the sender and the recipient, in Step 1 of the workflow. However, we face the challenge that
only authorized recipients are allowed in consortium blockchain. Therefore, we have to embed the
zero-knowledge proof that the recipients are authorized into the generation of one-time ephemeral
key (see §5.2). It is a new security requirement which does not exist in the public blockchain. This
requirement is a major difference between PAChain and [10].

Transaction Privacy with Auditability: Our transaction amount privacy is achieved by using additive
homomorphic encryption and zero-knowledge proof in Step 1 of the workflow. The proof shows
that the Tx output amount is encrypted correctly, falls within a valid range, and the total Tx
input and output amount are balanced. The major challenge is that using Paillier encryption with
zero-knowledge range proof is not efficient. To be more specific, encrypting 2048-bit plaintext and
performing the binary-decomposition range proof is an overkill for 64-bit of transaction amount
(see §4). Therefore, we propose the use of modified ElGamal encryption with signature-based range
proof to enhance the efficiency (see §4.2). The size of the zero knowledge proof is independent to
the size of the range. It cannot be used in public blockchain since it requires trusted setup.

Auditability: Auditability for sender and recipient identity can be achieved by encrypting their pub-
lic keys to the auditor, followed the the zero-knowledge proof of the correctness of such encryption
in Step 1 of the workflow. We have discussed the auditability of transaction amount above.

4

Our construction can also be modified to provide fine-grained privacy policy. For example, if
the transaction amount M is under $10,000, then the bank does not need to perform checking for
anti-money laundering. As a result, we can leverage our efficient range proof to run the proof of
knowledge:

PoK{(M, sender ID, recipient ID) : 0 ≤M ≤ 10, 000

or Encrypt (M, sender ID, recipient ID) to the auditor}.

The major difficulty is to allow an auditor to decrypt the transaction amount. Monero used
the additive homomorphic Pedersen commitment which does not allow decryption. If we use
the Paillier encryption instead, then it is difficult to find a suitable and efficient range proof.
By taking advantage of the consortium blockchain framework, we propose the use of modified
ElGamal encryption with a signature-based range proof (see §4.2). The size of the zero knowledge
proof is independent to the size of the range. It cannot be used in public blockchain since it requires
trusted setup.

2.3 Threat Model

We assume that the system parameters are generated honestly. We consider the following attacker
model for privacy:

– The attacker can create malicious client or corrupt any client.
– The peer and CA are assumed to be honest-but-curious: it tries to break privacy passively by

recording all inputs, outputs and randomness used, but it still follows the protocols.
– All keys and data used by the orderers are known to the attacker.
– The auditor is assumed to be honest for privacy. Compromising the auditor trivially breaks

all privacy.3

We do not consider network-level privacy issues, such as tracing the sender’s IP address or ana-
lyzing meta-data in network packets. The correctness of the consensus algorithm is not considered
in this paper.

Consider the example of a consortium of banks. It is reasonable to assume that the banks
jointly generate system parameters (e.g., by multi-party computation). Each bank acts as a peer
and follows the protocol (if it ignores Tx or endorses invalid Tx, it will be discovered by other
banks and will be handled by other means outside the blockchain system). However, the bank may
be curious to view the Tx details of other banks. Our privacy model captures this scenario. As
a result, we allow a larger degree of decentralization by allowing multiple endorsers to validate a
Tx, without causing extra privacy leakage.

3 Backgrounds

3.1 Related Works

Public Blockchain. Monero is a cryptocurrency created in 2014 that provides privacy by linkable
ring signature, stealth address and Ring Confidential Transactions [14]. The major disadvantage
of Monero is the size of the linkable ring signature, which is proportional to the size of the ring
(related to the level of sender anonymity).

Zcash is a cryptocurrency created in 2016 that offers privacy and selective transparency of
Txs by using zero-knowledge proofs (zk-SNARK) on special shielded transactions [3]. The major
disadvantage of Zcash is the large signing key size of 896MB, long key generation time of 8 minutes

3 One may argue that it gives too much power for auditor. However in most companies, internal auditor
should always be able to control and governance business operations. In some industries, laws require
that information must be provided to the court when requested (e.g., anti-money laundering in banks
and lawful interception in telecommunication industry).

5

and long signing time of 3 minutes. As a result, only around 7% of Txs are shielded in Zcash as
of March 2017. Recently, Zcash proposed a new Sapling update which reduced the proving time
to a few seconds. However, it is still far less efficient than the Monero’s approach (and also this
paper’s approach) which is about 100ms.

A decentralized anonymous payment (DAP) with the support of accountability is proposed
in [10]. They tackle the accountability problem in the public blockchain by using the zk-SNARK
approach. Hence, it is also not efficient.

No authentication is provided for all solutions in the public blockchain.

Consortium Blockchain. For consortium blockchain, the major platforms provide limited sup-
port for privacy. In R3’s Corda and Hyperledger Fabric, Txs are handled by different channels and
users can only view Txs in their own channel. Therefore, privacy is maintained by the system’s
access control policy. The level of privacy is lower than that of Monero and Zcash, which are not
affected by system administrators. In addition, Hyperledger Fabric uses VKey to provide trans-
action privacy by symmetric encryption. The problem of key distribution between all parties is a
severe challenge for a global deployment of such system. There is an experiment to integrate iden-
tity mixer [9] with Fabric 4. The identity mixer provides a better sender anonymity (by preventing
the system administrator to link all transactions from the same user), and provides auditability
for the sender identity.

Private Blockchain. Recently, a private industrial blockchain is proposed in [12], where multiple
distributed private ledgers are maintained by a subset of stakeholders in the network. Each private
ledger is maintained by its stakeholder only. This approach only provides privacy for users outside
the private ledger. To provide higher level of privacy, the system must be divided into smaller
private ledgers. However, more expensive cross ledger asset transfer is needed if there are some
Txs between private ledgers.

PRCash[18] is a centrally-issued cryptocurrency with privacy and auditability. They provide
anonymity of the sender and recipient identity. A mixing technique is used to obfuscate the relation
between multiple inputs and outputs. However, there are still certain linkability between Txs.
Anyone can see that the input of a Tx comes from which previous Tx output. For auditability,
PRCash provides prefect transaction amount privacy and no auditability for small amount Tx.
For Txs with large amount, it cannot provide privacy for these Txs.

3.2 Mathematical Backgrounds

Bilinear Groups. G is an algorithm, which takes as input a security parameter λ and outputs a
tuple (p,G1,G2,GT , ê), where G1, G2 and GT are multiplicative cyclic groups with prime order
p, and ê : G1 ×G2 → GT is a map, which has the following properties: (1) Bilinearity: ê(ga, ĝb) =
ê(g, ĝ)ab for ∀g ∈ G1, ĝ ∈ G2 and ∀a, b ∈ Zp. (2) Non-degeneracy: There exists g ∈ G1, ĝ ∈ G2

such that ê(g, ĝ) 6= 1G. (3) Computability: There exists an efficient algorithm to compute ê(g, ĝ)
for ∀g ∈ G1, ĝ ∈ G2.

4 Transaction Privacy

One of the challenging part for privacy in blockchain is the confidentiality of the transaction
amount. The major difficulty is how to verify the Tx that (1) the total committed input amount
is equal to the total committed output amount; (2) all committed amounts fall within a valid
range, e.g., from 0 to 264. This requirement is commonly known as the confidential transaction.
Theoretically, it can be achieved by combining additive homomorphic commitment with zero-
knowledge range proof. One example is Monero [14], which uses Pedersen commitment with 1-
out-of-2 ring signature-based binary decomposition range proof.

In PAChain, we require auditability of transaction amount. It is common in business use cases
that all Txs can be audited by internal auditors or some external regulators. Therefore, it is

4 https://jira.hyperledger.org/browse/FAB-2005

6

necessary to replace additive homomorphic commitment with additive homomorphic encryption
in confidential transaction, such that the decryption key is hold by the auditor. However, technical
difficulties arise when combining the additive homomorphic Paillier encryption [15] with existing
zero-knowledge range proof.

Range Proof with Encryption. Range proof is one essential element in transaction privacy.
Without a range proof, the attacker can create a transaction with one input $0 and two outputs
of $100 and -$100. The sum of input and output amount is still balanced. If the output amount
is encrypted, the attacker can create $100 out of an input $0. Therefore range proof is needed to
prevent any negative amount or overflow amount.

In order to prove a secret value x lies between [0, R], there are three families of range proof
in the literature: Square Decomposition method by Boudot [6], Multi-Base Decomposition method
by Bellare and Goldwasser [2], and Signature-based method by Camenisch et al. [8].

– Square Decomposition. Boudot [6] used a mathematical theorem that any positive integer
can be written as a sum of four squares, to carry out a range proof. However, it can only be
used in a group of unknown order (since for group with known order p, a negative number −n
is equivalent to −n+ p). If this method is used in blockchain, it would result in a much larger
signature size due to the use of composite order group.

– Multi-Base Decomposition. Bellare and Goldwasser [2] used the binary decomposition of
x to perform a bit-by-bit range proof in [0, R = 2k). Later, it is further generalized to a multi-
base decomposition. However, the space and time complexities depend on the size of the range.
Recently, Bulletproof [7] is proposed to reduce the proof size to O(log k).

– Signature-based. Camenisch et al. [8] proposed a range proof based on a set Φ of public
signatures on every element in [0, R] by a designated authority. The range proof consists of
proving the knowledge of a signature in Φ on the secret x without revealing x nor the signature.

Problems of Using Paillier Encryption with Range Proof. Paillier encryption [15] is the
most common additive homomorphic encryption to date. However, combining Paillier encryption
with existing range proof is not trivial in blockchain applications. Therefore, there is no simple
and efficient solution for using Paillier encryption with range proof in blockchain.

4.1 Security Model of Transaction Privacy Protocol

We give the notion and security model for transaction privacy.

Transaction Privacy Protocol. A transaction privacy protocol consists of a tuple of poly-time
algorithms as described follows:

– (param, asktp)← Setup(1λ, R). On input a security parameter 1λ and the range parameter R,
it outputs the auditor secret key asktp and the system parameter param (which includes the
auditor public key). Suppose param is the input of all other algorithms, and hence is omitted
for simplicity.

– ({Cout,j , rout,i}j∈[1,n′], πtp)/⊥ ← TxPrivacySpend ({Mout,j}j∈[1,n′], {Cin,i, Min,i, rin,i}i∈[1,n]). On
input n′ output transaction amount Mout,j , n transaction input ciphertext Cin,i, amount Min,i

and randomness rin,i, it outputs ⊥ if Cin,i is not a valid ciphertext for (Min,i, rin,i) for some

i ∈ [1, n], or
∑n
i=1Min,i 6=

∑n′

j=1Mout,j
5. For each Mout,j , it runs the following sub-protocol:

– (Cenc, renc, πenc)← EncProof(M). On input a message M ∈ [0, R), it outputs a ciphertext
Cenc encrypted to the auditor, its encryption randomness renc and a zero-knowledge proof
πenc that C encrypts M and M ∈ [0, R).

It obtains (Cout,j , rout,j , πenc,j) ← EncProof(Mout,j). It computes πtp which includes all πenc,j

and the zero-knowledge proof of
∑n
i=1Min,i =

∑n′

j=1Mout,j . It outputs ({Cout,j , rout,i}j∈[1,n′],
πtp).

5 If it is the genesis transaction where money is created, input ciphertext and amount are not needed.
The verification of genesis transaction also does not need to check for it. We omit the description for
genesis transaction for simplicity.

7

– 1/0 ← TxPrivacyVerify({Cin,i}i∈[1,n], {Cout,j}j∈[1,n′], πtp). On input n transaction input
ciphertext Cin,i, n

′ transaction output ciphertext Cout,j and a proof πtp, it outputs 1 if πtp
is a valid zero-knowledge proof, and outputs 0 otherwise. It includes running the following
sub-protocol EncVerify(Cout,j , πenc,j) for each πenc,j ∈ πtp:

– 1/0 ← EncVerify(Cenc, πenc). On input a ciphertext Cenc and a proof πenc, it outputs 1 if
πenc is a valid zero-knowledge proof, and outputs 0 otherwise.

– M ← Decrypt(asktp, C). On input the auditor secret key asktp and a ciphertext C, it outputs
the decrypted transaction amount M .

Security Model. We define the security requirements for transaction privacy:

1. No output transaction amount is outside the range.
2. The total input transaction amount is equal to the total output transaction amount.
3. No one can learn the output transaction amount, except the auditor.

The security of transaction privacy is formalized as follows.

Definition 1 (Soundness). A transaction privacy protocol is sound if for all PPT adversary A,
it holds that given (param, asksp) ← Setup(1λ, R); A outputs ({Cin,i}i∈[1,n], {Cout,j}j∈[1,n′], πtp),
then

Pr

[
TxPrivacyVerify({Cin,i}i∈[1,n], {Cout,j}j∈[1,n′], πtp) = 1,∃j ∈ [1, n′] :
Mout,j ← Decrypt(asktp, Cout,j),Mout,j /∈ [0, R)

]
≤ negl(λ).

Definition 2 (Balance). A transaction privacy protocol is balance if for all PPT adversary A,
it holds that given (param, asksp) ← Setup(1λ, R), A outputs ({Cin,i}i∈[1,n], {Cout,j}j∈[1,n′], πtp),
then:

Pr

TxPrivacyVerify({Cin,i}i∈[1,n], {Cout,j}j∈[1,n′], πtp) = 1,
∀j ∈ [1, n′],Mout,j ← Decrypt(asktp, Cout,j),

∀i ∈ [1, n],Min,i ← Decrypt(asktp, Cin,i),
∑n
i=1Min,i 6=

∑n′

j=1Mout,j

 ≤ negl(λ).

where A can query the Spend oracle to request generating an honest run of TxPrivacySpend.
We additionally require that {Cin,i} are from the output of the Spend oracle.

Definition 3 (Privacy). A transaction privacy protocol is private if for all PPT adversary
(A1,A2), it holds that given when A1 is given param generated from Setup(1λ, R), A1 outputs

({M (0)
out,j ,M

(1)
out,j}j∈[1,n′], {C∗in,i,M∗in,i, r∗in,i}i∈[1,n]), and when A2 is given ({C∗out,j}j∈[1,n′], π∗tp), where

({C∗out,j, r∗out,i}j∈[1,n′], π∗tp) ← TxPrivacySpend ({M (b)
out,j}j∈[1,n′], {C∗in,i,M∗in,i, r∗in,i}i∈[1,n]) for

some random bit b, A1 outputs its guess b′, then:

Pr
[
b = b′

]
≤ negl(λ).

We additionally require that
∑n
i=1Min,i =

∑n′

j=1M
(0)
out,j =

∑n′

j=1M
(1)
out,j.

4.2 Transaction Privacy for PAChain

We give our efficient transaction privacy solution for consortium blockchain. We overcome the
problem for effectively combining additive homomorphic encryption and range proof due to two
properties: (1) consortium blockchain allows trusted setup; (2) the transaction amount is short.

The first observation is that encrypting a “short” transaction amount (e.g., 51-bit can represent
all 21M Bitcoins in terms of satoshi, or 64-bit can represent trillions of dollars with sixth decimals)
with Paillier encryption of message space of 2048-bit is superfluous. Therefore, we propose to
use the additive homomorphic ElGamal encryption instead. However, decrypting such ciphertext
requires the computation of discrete logarithm, which is not feasible for large message space.
Hence, we decompose the K-bit transaction amount M into ` segment µ0, . . . , µ`−1 which are

8

smaller than the message space u by M =
∑`−1
j=0 µju

j . As a result, we encrypt each µj by additive
homomorphic ElGamal encryption. The small message space of u guarantees efficient decryption. In
our implementation, we consider 64-bit transaction amount and the auditor uses a pre-computation
table of (g, g2, . . . , gu−1) for efficient decryption. We can choose ` = 4, u = 65536 and the pre-
computation table is about 2MB. The ciphertext size is 2048-bit, which is still less than the
4096-bit ciphertext size of Paillier encryption.

Another advantage of using ElGamal encryption is the ease to combine with range proof. By
using ECC ElGamal encryption, it can be combined with the Boneh-Boyen signature-based range
proof [8]. Note that this solution is only suitable for consortium blockchain since the non-interactive
version of such range proof requires a trusted setup.

Our Construction. Our transaction privacy (TP) protocol is described below.

- Setup. On input a security parameter 1λ and the range parameter R = u`, it generates the bilinear
group by (p,G1,G2,GT , ê)← G(1λ). It randomly picks generators g, g0 ∈ G1, ĝ ∈ G2 and X ∈ Zp.
It computes Ŷ = ĝX, Ai = g

1
X+i for i ∈ [0, u− 1]. Suppose H : {0, 1}∗ → Zp is a collision resistant

hash function. In addition, suppose the auditor picks a random secret key asktp in Zp and outputs

its public key htp = gasktp . It outputs param = (g, g0, htp, ĝ, ê(g, ĝ), Ŷ, u, `,H,A0, . . . ,Au−1).

- TxPrivacySpend. On input n′ output transaction amount Mout,j , n transaction input ciphertext
Cin,i, amountMin,i and randomness rin,i, it outputs⊥ if Cin,i is not a valid ciphertext for (Min,i, rin,i)

for some i ∈ [1, n], or
∑n
i=1Min,i 6=

∑n′

j=1Mout,j .
For each Mout,j , it obtains (Cout,j , rout,j , πenc,j) by running the sub-protocol EncProof(Mout,j).

EncProof. Suppose that the prover wants to prove some M lies in [0, u`). It runs as follows:

1. It first decomposes M into µk ∈ [0, u− 1] such that M =
∑`−1
k=0 µku

k.
2. For each µk, the prover computes the ElGamal ciphertext (Ck = gµk0 hrktp , Bk = grk) for

some random rk ∈ Zp. Denote Cenc = {Ck, Bk}k∈[0,`−1] and renc =
∑`−1
k=0 rku

k.
3. For each µk, it proves in zero-knowledge that the encrypted µk corresponds to some Aµk :

πenc ← PoK{({µk, rk,Aµk}k∈[0,`−1]) :

ê(g, ĝ) = ê(Aµk , ĝ
µk · Ŷ) ∧ Ck = gµk0 hrktp ∧Bk = grk}.

Details of the zero-knowledge proof is as follows. The prover randomly picks vk, sk, tk, ν ∈ Zp
for k ∈ [0, `− 1] and computes:

Vk = Avkµk , ak = ê(Vk, ĝ)−sk · ê(g, ĝ)tk , Ek = gsk0 h
νk
tp , Dk = gνk .

It computes c̃ = H(param, {Vk, ak, Bk, Ck, Dk, Ek}k∈[0,`−1]) and for k ∈ [0, `− 1]:

zµk = sk − c̃µk, zvk = tk − c̃vk, zrk = νk − c̃rk.

Then πenc = ({Vk, zµk , zvk , zrk}k∈[0,`−1], c̃).
4. It outputs (Cenc, renc, πenc).

Observe that Cout,j = {Cj,k, Bj,k}k∈[0,`−1]. For simplicity, denote C ′out,j =
∏`−1
k=0 C

uk

j,k and

B′out,j =
∏`−1
k=0B

uk

j,k. The same definition applies for input ciphertext.
Next, it proves that the total input Tx amount is equal to the total output Tx amount. It is

equivalent to know xtp =
∑n′

j=1 rout,j −
∑n
i=1 rin,i, such that∏n′

j=1
C ′out,j/

∏n

i=1
C ′in,i = h

xtp

tp .

The zero knowledge proof of xtp is as follows. It picks some random rtp ∈ Zp and computes

Rtp = h
rtp
tp , R̃tp = grtp , c̃′ = H(param, Rtp, R̃tp, {Cin,i}i∈[1,n], {Cout,j , πenc,j}j∈[1,n′]), ztp = rtp+ c̃′xtp.

Denote πtp = (ztp, c̃
′, {πenc,j}j∈[1,n′]).

9

The algorithm outputs ({Cout,j , rout,i}j∈[1,n′], πtp).
- TxPrivacyVerify. On input n Tx input ciphertext Cin,i, n

′ Tx output ciphertext Cout,j and a proof
πtp = (ztp, c̃

′, {πenc,j}j∈[1,n′]). For each πenc,j , it runs the following sub-protocol:

EncVerify. On input the ciphertext Cout,j = {Ck, Bk}k∈[0,`−1] and the proof πenc,j = ({Vk, zµk ,
zvk , zrk}k∈[0,`−1], c̃), it validates the proof by computing for all k ∈ [0, `− 1]:

Dk = Bc̃kg
zrk , Ek = C c̃kg

zµk
0 h

zrk
tp , ak = ê(Vk, Ŷ

c̃ĝ−zµk) · ê(g, ĝ)zvk .

It outputs 1 if c̃ = H(param, {Vk, ak, Bk, Ck, Dk, Ek}k∈[0,`−1]) or 0 otherwise.

It computes R′tp = h
ztp
tp (

∏n
i=1 C

′
in,i∏n′

j=1 C
′
out,j

)c̃
′
, R̃′tp = gztp(

∏n
i=1 B

′
in,i∏n′

j=1 B
′
out,j

)c̃
′
. It returns 1 if and only if all

EncVerify outputs 1, and c̃′ = H(param, R′tp, R̃
′
tp, {Cin,i}i∈[1,n], {Cout,j , πenc,j}j∈[1,n′]).

- Decrypt. On input the auditor’s secret key asktp and a ciphertext Cenc = {Ck, Bk}k∈[0,`−1], it

computes gµk0 = Ck

B
asktp
k

for k ∈ [0, ` − 1]. The auditor uses a pre-computation table containing

(g00 , g
1
0 , . . . , g

u−1
0) to find out the value of µk. Finally, the auditor recovers M =

∑`−1
k=0 µku

k.

Security of Transaction Privacy. We give the security theorem of our TP protocol. The proofs
are given in the appendix.

Theorem 1. Our TP protocol is sound if the u-Strong Diffie-Hellman(SDH) assumption holds in
(G1,G2) in the random oracle model. Our TP protocol is private if the decisional Diffie-Hellman
(DDH) assumption holds in G1 in the random oracle model. Our TP protocol is balance if the
discrete logarithm (DL) assumption holds in G1 in the random oracle model.

5 Recipient Privacy

In blockchain, the user address is the hash of his public key, and hence it represents his identity. If
we want to preserve the recipient privacy, we can always use a new public key for each Tx. How-
ever, this approach is problematic in some consortium blockchain which only allows Txs between
authenticated users. It means that all recipient (and sender) address should be authenticated. A
straightforward approach is to associate each address with a certificate issued by a CA. The key
challenge is how to validate the certificate while hiding the public key/address at the same time.

Previous Works. Dash’s PrivateSend is a coin-mixing service based on CoinJoin [16]. Dash
requires combining identical input amounts from multiple senders at the time of mixing, and thus
it restricts the mixing to only accept certain denominations (e.g. $0.1, $1, $10, etc.). The level
of anonymity is related to number of Txs mixed. In Monero, the recipient uses stealth address
[14], which is a one-time DH-type public key computed from the recipient’s public key and some
randomness included in the transaction block. The corresponding one-time secret key is only
computable by the recipient. In Zcash, it uses the general zk-SNARK to provide zero knowledge
for all Tx details including UTXO used [3].

5.1 Security Model of Recipient Privacy Protocol

The formal security notion and security models are defined as follows.

Recipient Privacy Protocol. A recipient privacy protocol consists of a tuple of poly-time algo-
rithms as described follows:

1. (param, askrp) ← Setup(1λ). On input a security parameter 1λ, it outputs the auditor secret
key askrp and the system parameter param (which includes the auditor public key). Suppose
param is the input of all other algorithms, and hence is omitted for simplicity.

2. (usk, upk) ← UserKeyGen(). The user outputs his long-term secret key usk and long-term
public key upk.

10

3. (otpk, Rtx) ← OneTimePkGen(upk). On input a long-term public key upk, it outputs a
one-time public key otpk and a transaction randomness Rtx.

4. otsk/⊥ ← OneTimeSkGen(otpk, Rtx, usk). On input a long-term public key upk, a transac-
tion randomness Rtx and long-term secret key usk, it outputs a one-time secret key otsk or ⊥
if otpk is not related to usk.

5. (cask, capk)← CAKeyGen(). The CA outputs his secret key cask and public key capk.
6. cert ← CertIssue(capk, upk). This is an interactive algorithm runs between the CA and a

user, with common input CA’s public key capk and user’s long-term public key upk. Each
party additionally takes its own secret key as private input. After the interaction, the CA
returns the certificate cert to the user.

7. (πotsk, otpkr, Rtx,r, Crp, πrp)← RecPrivacySpend (capk, otpks, Rtx,s, usk, upkr, certr). On in-
put the CA’s public key capk, the sender’s input UTXO (including his one-time public key
otpks and transaction randomness Rtx,s), the sender’s long-term secret key usk6, the recipient’s
long term public key upkr and his certificate certr, the sender runs as follows:

(a) It first runs otsk← OneTimeSkGen(otpks, Rtx,s, usk). It outputs a zero-knowledge proof
πotsk of knowing otsk.

(b) It also outputs (otpkr, Rtx,r)← OneTimePkGen(upkr).
(c) It also outputs a ciphertext Crp encrypting upkr to the auditor, and a proof πrp showing

that Crp encrypts upkr and certr ← CertIssue(capk, upkr).
The sender outputs (πotsk, otpkr, Rtx,r, Crp, πrp).

7

8. 1/0← Verify(capk, πotsk, otpks, otpkr, Rtx,r, Crp, πrp). On input the CA’s public key capk, the
sender’s one-time public key otpks with the proof of corresponding one-time secret key πotsk,
the recipient’s one-time public key otpkr, the transaction randomness Rtx,r, a ciphertext Crp

and a proof πrp, it outputs 1 if πotsk and πrp are valid zero-knowledge proofs, and outputs 0
otherwise.

9. upkr ← Decrypt(askrp, Crp). On input the auditor secret key askrp and a ciphertext Crp, it
outputs the decrypted public key upkr.

Security Model. We first define the security requirements for recipient privacy:

1. No unauthorized recipient can spend their received money. (Note that in this model, we allow
the adversary to transfer money to arbitrary unauthorized address. However, the corresponding
secret key is unknown to the adversary and hence the adversary has no motivation to transfer
money in this way.)

2. No one can learn the identity of the recipient, except the auditor.

The security properties of a recipient privacy protocol are formalized as follows.

Definition 4 (Soundness). A recipient privacy protocol is called sound if for all PPT adver-
sary A, it holds that given (param, askrp, capk), where (param, askrp)← Setup(1λ); (cask, capk)←
CAKeyGen(), A outputs (πotsk, otpks, otpk∗, R∗tx, C

∗
rp, π

∗
rp), (π

∗
otsk, otpk∗, otpkr, Rtx,r, Crp, πrp), then:

Pr

[
Verify(capk, πotsk, otpks, otpk∗, R∗tx, C

∗
rp, π

∗
rp) = 1

∧Verify(capk, π∗otsk, otpk∗, otpkr, Rtx,r, Crp, πrp) = 1

]
≤ negl(λ),

where A can query the oracles defined below:

– KeyGen(): it runs (usk, upk)← UserKeyGen(), stores (usk, upk) in a list L (which is initially
empty) and outputs upk.

6 If it is the genesis transaction, input UTXO and the sender’s key are not needed. The verification of
genesis transaction also does not need to check the input UTXO. We omit the description for genesis
transaction for simplicity.

7 In this section, we model the recipient privacy as a single input, single output transaction. It can be
easily generalized into multiple input, multiple output transaction. We use the simplified model for the
ease of understanding.

11

– Corrupt(upk): on input upk, it searches (usk, upk) ∈ L and returns usk. It returns ⊥ if no such
key is found in L.

– Issue(upk): on input upk, it runs as the CA of the CertIssue(capk, upk) protocol with private
input cask. It outputs cert.

– Spend(upks, otpks, Rtx,s, upkr, certr): on input a sender public key upks, the (otpks, Rtx,s) from
the previous transaction8, an authorized recipient upkr with certificate certr, it firstly re-
trieves (usks, upks) ∈ L. Then it outputs (πotsk, otpkr, Rtx,r, Crp, πrp) ← RecPrivacySpend
(capk, otpks, Rtx,s, usks, upkr, certr).

We additionally require that upk∗ ← Decrypt(askrp, C
∗
rp), upk∗ is never queried to the Issue oracle,

and (upk∗, otpk∗, R∗tx, ·, ·) is never queried to Spend oracle.

Definition 5 (Anonymity). A recipient privacy protocol is called anonymous if for all PPT
adversary (A1,A2), it holds that when A1 is given param, cask, capk, where (param, askrp) ←
Setup(1λ), (cask, capk)← CAKeyGen() and outputs (otpks, Rtx,s, usk, upkr,0, certr,0, upkr,1, certr,1);
and A2 is given (C∗rp, π

∗
rp), where (π∗otsk, otpk∗r, R∗tx,r, C

∗
rp, π

∗
rp)← RecPrivacySpend(capk, otpks,

Rtx,s, usk, upkr,b, certr,b) for some random bit b, A2 outputs its guess b′

Pr [b′ = b] ≤ negl(λ).

The adversary (A1,A2) is given the KeyGen, Corrupt oracles.

5.2 Recipient Privacy for PAChain

Stealth address [14] appears to be the most efficient approach for recipient privacy. However in
consortium blockchain, only the recipient’s public key is authenticated by the CA, but not the
one-time public key. Therefore, the sender additionally needs to show that the one-time public key
is computed from an authenticated public key, without revealing the public key itself.

Our Construction. The recipient’s certificate is signed by the CA using BBS+ signature [1],
which allows efficient zero-knowledge proof. In addition, we encrypt the long-term public key in
the zero-knowledge proof, such that the auditor can decrypt the real address (long-term public
key) of the recipient.

Our recipient privacy (RP) protocol is described below.

- Setup. On input a security parameter 1λ, the setup algorithm generates the bilinear group by
(p,G1,G2, GT , ê) ← G(1λ). It picks some random generators g, g2, g3, h2 ∈ G1 and ĝ2 ∈ G2.
Suppose H : {0, 1}∗ → Zp, H ′ : G1 → Zp are collision resistant hash functions. In addition,
suppose the auditor picks a random secret key askrp ∈ Zp and outputs its public key hrp = gaskrp .
It outputs the public parameters param = (p,G1,G2,GT , ê, g, hrp, g2, g3, h2, ĝ2, H,H ′).
- UserKeyGen. The user randomly picks a long-term secret key x1, x2 ∈ Zp and computes a long-
term public key Y1 = gx1

2 , Y2 = gx2
2 . It outputs the user key pair (usk = (x1, x2), upk = (Y1, Y2)).

- OneTimePkGen. On input upk = (Y1, Y2), the sender randomly picks rtx ∈ Zp and outputs

(Rtx = grtx2 , otpk = Y1g
H′(Y

rtx
2)

2).

- OneTimeSkGen. On input otpk, Rtx and usk = (x1, x2), the recipient computes a one-time secret
key otsk = x1 +H ′(Rx2

tx), and it outputs otsk if otpk = gotsk2 .

- CAKeyGen. The CA randomly picks β ∈ Zp and computes Ŵ2 = ĝβ2 . It outputs the CA key pair

(cask = β, capk = Ŵ2).

- CertIssue. On input CA’s public key capk and the user long-term public key upk = (Y1, ·), the
user first performs a zero-knowledge proof of discrete logarithm: x1 = logg2 Y1. Denote this proof
as πca. After the CA validates πca, the CA picks some random s, w ∈ Zp and uses his private key

cask = β to compute: F = (h2 · Y1 · gs3)
1

β+w . The CA returns the certificate (F,w, s) to the user.

- RecPrivacySpend. On input param, capk = Ŵ2:

8 It can be empty if it is the genesis transaction.

12

1. The sender with usk decides one or more UTXOs that he wants to spend. For simplicity,
assume he picks one UTXO with (otpks, Rtx,s). He runs otsks ← OneTimeSkGen(param,
otpks, Rtx,s, usk). It runs a zero-knowledge proof of discrete logarithm: otsks = logg2 otpks.
Denote this proof as πotsk.

2. The sender chooses the set of recipients. For simplicity, assume there is only one recipient with
long-term public key upkr = (Y1, Y2). The sender generates the recipient’s one-time public
key by running OneTimePkGen. The sender obtains otpkr, Rtx,r and the randomness rtx.
Denote htx = H ′(Y rtx2).

3. The sender encrypts Y1 to the auditor by picking a random rcert ∈ Zp and computing Crp =
(Ccert = Y1 · hrcertrp , Bcert = grcert).

4. The sender runs the following proof of knowledge for showing that (1) otpkr is computed from
a public key, (2) the public key has a valid certificate (F,w, s), (3) the public key is encrypted
to the auditor:

πrp ← PoK{(F,w, s, Y1, htx, rcert) : ê(F, ĝw2 · Ŵ2) = ê(h2 · Y1 · gs3, ĝ2)

∧ otpkr = Y1g
htx
2 ∧Bcert = grcert ∧ Ccert = Y1h

rcert
rp }.

The details of the zero knowledge proof πrp is as follows.

(a) ZKCommit: It picks some random ρ, rτ , rω, rσ, rρ, rcert, rc, rs ∈ Zp, computes Θ = F ρ

and

Rcert,1 = ê((h2Ccert)
rρgrs3 Θ

−rωh−rσrp , ĝ2), Rcert,2 = grc , Rcert,3 = B
rρ
certg

−rσ , Rcert,4 = hrcrp g
−rτ
2 .

(b) ZKChallenge: It computes c = H(CertAuth.mpk, Crp, Θ, Rcert,1, Rcert,2, Rcert,3, Rcert,4).

(c) ZKResponse: It computes:

zω = rω + c · w, zτ = rτ + c · htx, zρ = rρ + c · ρ,
zc = rc + c · rcert, zσ = rσ + c · rcert · ρ, zs = rs + c · ρ · s.

It outputs πrp = (c,Θ, zω, zτ , zρ, zc, zσ, zs).

5. Output πotsk, otpks, otpkr, Rtx,r, Crp and πrp.

- RecPrivacyVerify. On input param, capk, πotsk, otpks, otpkr, Rtx,r, Crp and πrp, it outputs 1 if πotsk
and πrp are valid zero knowledge proofs.

The details of verifying the zero knowledge proof πrp = (c,Θ, zω, zτ , zρ, zc, zσ, zs) is as follows.

1. ZKReconstruct: Denote Crp = (Ccert, Bcert). It computes:

Rcert,1 = ê((h2 · Ccert)
zρgzs3 Θ

−zωh−zσrp , ĝ2) · ê(Θ, Ŵ2)c,

Rcert,2 = gzcB−ccert, Rcert,3 = B
zρ
certg

−zσ , Rcert,4 = hzcrp g
−zτ
2 (otpkr/Ccert)

c.

2. ZKCheck: It computes c′ = H(CertAuth.mpk, Crp, Θ,Rcert,1, Rcert,2, Rcert,3, Rcert,4). If c = c′,
then πrp is a valid zero knowledge proof.

Security of Recipient Privacy. We give the security theorem of our RP protocol. The proofs
are given in the full version of the paper.

Theorem 2. Our RP protocol is sound if the q-SDH assumption holds in (G1, G2) in the random
oracle model, where q is the maximum number of Issue oracle query. Our RP protocol is anonymous
if the DDH assumption holds in G1 in the random oracle model.

13

6 Sender Privacy

In the UTXO model, the sender has to specify the UTXOs that he wants to use. The UTXOs
include the information of the owner’s address as well as the transaction amount. The linkage
between the current transaction and UTXOs guarantees the validity of the transaction and ensures
that there is no double spending. However, this linkage violates the privacy of the sender (no matter
the address is used for one time only and the transaction amount is encrypted). It is a dilemma
to preserve the transaction correctness and to protect the sender privacy at the same time.

Previous Works. The sender privacy for Dash and Zcash are achieved as the same way as the
recipient privacy. In Monero, it uses linkable ring signature (LRS) for hiding the real UTXOs
used with other UTXOs (by the anonymity property of LRS), preventing double spending (by the
linkability property of LRS) and ensuring transaction correctness (by the unforgeability property
of LRS) at the same time [14]. The level of anonymity is related to number of UTXOs (denote as
L) included in LRS. However, the number of computation used in signing and the signature size
are both O(L). Recently, Sun et al. reduced the signature size to O(1) [17], at the price of using
trusted setup.

6.1 Security Model of Sender Privacy Protocol

The formal security notion and models are given as follows.

Sender Privacy Protocol. A sender privacy protocol consists of a tuple of poly-time algorithms
as described follows:

– (param, askrp) ← Setup(1λ). On input a security parameter 1λ, it outputs the auditor secret
key asksp and the system parameter param (which includes the auditor public key). Suppose
param is the input of all other algorithms, and hence is omitted for simplicity.

– (usk, upk) ← UserKeyGen(). The user outputs his long-term secret key usk and long-term
public key upk.

– (esk, epk) ← EndorserKeyGen(). The endorser outputs his secret key esk and public key
epk.

– cred← CredIssue(epk, upk, Ctp). This is an interactive algorithm runs between the endorser
and a user, with common input endorser public key epk, user’s public key upk and the ciphertext
of the transaction amount Ctp. Each party additionally takes its own secret key as private input.
After the interaction, the endorser returns the credential cred to the user.

– (Csp, T, πsp)← CredSign(usk, upk, cred,m, r). On input a senders’ secret/public key usk, upk,
the credential cred corresponding to the input transaction amount m encrypted with random-
ness r, it runs as follows:
1. It encrypts upk to the auditor and obtains the ciphertext Csp.
2. It computes a linking tag T from usk.
3. It generates a zero-knowledge proof πsp for (1) the correctness of Csp, T above; (2) knowing

cred,m, r, upk such that (Ctp, r) = Enc-Proof.Enc(m) and cred = CredIssue(epk, upk, Ctp).
It outputs (Csp, T, πsp).

– 1/0 ← Link(T1, T2). On input two linking tags T1 and T2, it outputs 1 if they are linked
(computed by the same secret key) or 0 otherwise.

– 1/0 ← Verify(epk, Csp, T, πsp). On input the endorser public key epk, the sender’s ciphertext
Csp, linking tag T , and a proof πsp, it outputs 1 if πsp is a valid zero-knowledge proof, and
outputs 0 otherwise.

– upks ← Decrypt(asksp, Csp). On input the auditor secret key askrp and a ciphertext Csp, it
outputs the decrypted public key upks.

Security Model. We first define the security requirements for sender privacy:

1. No adversary can spend without credential, even with colluding auditor.
2. No adversary can spend money of honest user, even with colluding endorser and auditor.

14

3. No one can learn the identity of the sender, except the auditor.

The security properties of a sender privacy protocol are formalized as follows.

Definition 6 (Soundness). A sender privacy protocol is sound if for all PPT adversary A, it
holds that:

Pr

[
Verify(epk, C∗sp,
T ∗, π∗sp) = 1

:
(param, asksp)← Setup(1λ); (esk, epk)← EndorserKeyGen();
(C∗sp, T

∗, π∗sp)← AIssuee,Sign(param, asksp, epk)

]
≤ negl(λ),

where the issue and sign oracle are defined as below:

– Issuee(upk): on input upk, it runs as the endorser of the CredIssue(epk, upk) protocol with
private input esk and it outputs cred.

– Sign(upk, usk,m, r): on input a sender’s public key upk, secret key usk, the input transaction
amount m encrypted with randomness r, it generates the credential cred corresponding to
upk,m, r. Then it outputs (Csp, T, πsp)← CredSign(usk, upk, cred,m, r).

We additionally require that upk∗ ← Decrypt(asksp, Csp) and upk∗ is never queried to the Issuee
oracle, and (C∗sp, T

∗, π∗sp) is not the output of Sign oracle.

Definition 7 (Unforgeability). A sender privacy protocol is unforgeable if for all PPT adver-
sary A, it holds that:

Pr

[
Verify(epk, C∗sp,
T ∗, π∗sp) = 1

:
(param, asksp)← Setup(1λ); (esk, epk)← EndorserKeyGen();
(C∗sp, T

∗, π∗sp)← AKeyGen,Corrupt,Issueu,Sign(param, asksp, epk, esk)

]
≤ negl(λ),

where the issue and sign oracle are defined as below:

– Issueu(upk): on input upk, it runs as the user of the CredIssue(epk, upk) protocol with private
input usk, where (usk, upk) ∈ L.

– Sign(upk, cred,m, r): on input a sender’s public key upk, its credential cred corresponding to the
input transaction amount m encrypted with randomness r, it firstly retrieves (usk, upk) ∈ L.
Then it outputs (Csp, T, πsp)← CredSign(usk, upk, cred,m, r).

We additionally require that upk∗ ← Decrypt(asksp, Csp) and upk∗ is the output of the KeyGen
oracle but is never queried to the Corrupt oracle, and (C∗sp, T

∗, π∗sp) is not the output of Sign oracle.

Definition 8 (Anonymity). A sender privacy protocol is anonymous if for all PPT adversary
A = (A1,A2), it holds that:

Pr

b′ = b :

(param, askrp)← Setup(1λ); (esk, epk)← EndorserKeyGen(); b← {0, 1};
({upk∗i , cred∗i ,m

∗
i , r
∗
i }i∈[0,1])← A

KeyGen,Corrupt
1 (param, epk, esk);

(C∗sp, T
∗, π∗sp)← CredSign(usk∗b , upk∗b , cred∗b ,m

∗
b , r
∗
b),

b′ ← AKeyGen,Corrupt
2 (param, esk, epk, C∗sp, T

∗, π∗sp)

 ≤ negl(λ).

where upk∗0, upk∗1 are the output of the KeyGen oracle, they are not queried to the Corrupt oracle,
and their corresponding secret key are denoted as usk∗0, usk∗1.

6.2 Sender Privacy for PAChain

We give our efficient sender privacy solution for consortium blockchain. By the semi-trusted prop-
erty of consortium blockchain, we can use the anonymous credential approach to achieve sender
privacy. By using the semi-trusted endorser as the group manager (in the honest-but-curious se-
curity model), we provide an efficient solution which has the signing time, verification time and
signature size independent to the number of UTXO included in the group. At the same time, the
sender can be revealed by the auditor. Note that similar to group signature, the endorser (who is-
sued credentials) cannot link the transaction by the credential he issued. Credential is issued to the

15

recipient when the endorser approve the transaction. The endorser does not have any advantage
in breaking anonymity in the UTXO model.

Our Construction. Our construction differs from traditional group signatures in two ways: (1) we
have to hide both the sender’s public key as well as the Tx amount, (2) we have to add a linkability
tag to avoid double spending. For the first requirement, we use the BBS group signature [5], since
the underlying credential is signed by Boneh-Boyen signature [4], which can be modified to sign
on multiple committed values [1]. For the second requirement, we use the tag structure used in
most linkable ring signature schemes.

There are two possible constructions: the Tx amount is in plaintext or in ciphertext. In the
UTXO model, transaction privacy is required in order to protect sender privacy (otherwise, the
attacker can use the Tx amount to link past transactions). In the account-based model, transaction
privacy may or may not be needed in the blockchain. For simplicity, we only give the Tx amount
ciphertext version here and the plaintext version can be constructed similarly.

- Setup. On input a security parameter 1λ, the setup algorithm generates the bilinear group
by (p,G1,G2, GT , ê) ← G(1λ). It picks some random generators g, g1, g2, u1, hs, f ∈ G1 and
ĝ2 ∈ G2. Suppose H : {0, 1}∗ → Zp is a collision resistant hash function. Denote htp as the
public key of the auditor in transaction privacy. Suppose the auditor picks a random secret key
asksp in Zp and outputs its public key hsp = gasksp . It outputs the public parameters param =
(p,G1,G2,GT , ê, g, g1, g2, u1, hs, f, htp, hsp, ĝ2, H).

- UserKeyGen. The user secret key is usk = x1 ∈ Zp and the public key is upk = Y1 = gx1
2 .9

- EndorserKeyGen. The endorser randomly picks α ∈ Zp and computes Wsp = ĝα2 . It outputs the
endorser key pair (esk = α, epk = Wsp).

- CredIssue. On input endorser public key epk, the user public key Y1 and the Tx amount ciphertext
C, the user first performs a zero-knowledge proof of secret key: x1 = logg2 Y1. Denote this proof
as πci. The user sends πci and πtp to the endorser, where πtp is the zero-knowledge transaction
privacy proof (showing the knowledge of (m, rtp) such that C = gmh

rtp
tp).

After the endorser validates the proofs πci and πtp, the endorser picks some random v, z ∈ Zp
and uses his secret key esk = α to compute: A = (hs · gv1 · C · Y1)

1
α+z . The endorser returns the

credential cred = (A, v, z) to the user.

- CredSign. On input param, and private input tuples x′in, credin, m
′
in, r
′
in, Y

′
in (such that Cin =

gm
′
inh

r′in
tp), it runs the following:

1. It computes the tag for detecting double spending: T = fx
′
in .

2. It encrypts the public key Y ′in to the auditor, by randomly choosing rcred ∈ Zp and computing
Csp = (Ccred = Y ′in · hrcredsp , Bcred = grcred).

3. It computes the zero knowledge proof πsp for: (1) the credential credin = (A, v, z) corresponds

to Y ′in = g
x′in
2 and Cin = gm

′
inh

r′in
tp ; (2) T = fx

′
in ; (3) Y ′in is encrypted to the auditor.

πsp =PoK{(x′in,m′in, r′in, A, v, z, rcred) : ê(A,Wspĝ
z
2) = ê(hsg

v
1g
m′inh

r′in
tp g

x′in
2 , ĝ2)

∧ T = fx
′
in ∧ Ccred = g

x′in
2 · hrcredsp ∧Bcred = grcred}.

The output signature σ = (πsp, Csp, T). Details of the zero-knowledge proof is shown as follows.

(a) ZKCommit: It picks some random a, rψ, rk, ra, rb, rz, rm, rr, rv ∈ Zp. It computes:

S = A · ua1 , Ξ = ga1 ,

Rcred,1 = ê(urb1 S
−rzgrv1 g

rmhrrtp g
rk
2 , ĝ2) · ê(u1,Wsp)

ra , Rcred,2 = gra1 ,

Rcred,3 = Ξrzg−rb1 , Rcred,4 = grψ , Rcred,5 = grk2 h
rψ
sp , Rcred,6 = frk .

9 This public key Y1 can be a long term public key if recipient anonymity is not protected in the previous
transaction. Otherwise, it can be a one-time public key.

16

Sender Recipient Tx Audit- Authenti- Tx Sender Verifier
Privacy Privacy Privacy ability cation Overhead Running Running

(bytes) Time Time

Public
blockchain

Monero 12704 300ms 300ms

Zcash 576 120s 10ms

Consortium
blockchain

Hyperledger
Fabric

628 10ms 10ms

This paper 2720 100ms 100ms

Table 2. Comparison of privacy-preserving blockchain schemes, for a standard 2-input-2-output transac-
tion.

(b) ZKChallenge: It computes c = H(CredAuth.mpk, Csp, T, S,Ξ,Rcred,1,Rcred,2, Rcred,3, Rcred,4,
Rcred,5, Rcred,6).

(c) ZKResponse: It computes:

zk = rk + c · x′in, za = ra + c · a, zz = rz + c · z,
zb = rb + c · a · z, zv = rv + c · v, zm = rm + c ·m′in,
zr = rr + c · r′in, zψ = rψ + c · rcred.

It outputs the proof πsp = (c, S,Ξ, zk, za, zz, zb, zv, zm, zr, zψ).

- Verify. On input param, the endorser public keys Ws, a signature σ = (πsp, Csp = (Ccred, Bcred), T),
it checks the validity of the proof πsp = (c, S, Ξ, zk, za, zz, zb, zv, zm, zr, zψ):

1. ZKReconstruct: It computes:

R′cred,1 = ê(uzb1 S
−zzgzv1 g

zmhzrtp g
zk
1 hcs, ĝ2) · ê(uza1 S−c,Wsp),

R′cred,2 = gza1 Ξ−c, R′cred,3 = Ξzzg−zb1 , R′cred,4 = gzψB−ccred,

R′cred,5 = gzk2 h
zψ
sp C

−c
cred, R′cred,6 = fzkT−c.

2. ZKCheck: It computes c′ = H(CredAuth.mpk, Csp, T, S,Ξ,Rcred,1, Rcred,2,Rcred,3, Rcred,4,Rcred,5, Rcred,6).

It outputs 1 if c = c′; and outputs 0 otherwise.

- Link. On input param and two tags T1, T2 in signatures σ1, σ2, such that T1 = T2, it outputs 1.
Otherwise it outputs 0.

- Decrypt. On input a ciphertext (Ccred, Bcred) and asksp, it computes Y ′ = Ccred/B
asksp
cred .

Security of Sender Privacy. We give the security theorem of our sender privacy (SP) protocol.
The proofs are given in the full version of the paper.

Theorem 3. The SP protocol is sound if the q-SDH assumption holds in (G1, G2) in the random
oracle model, where q is the maximum number of Issuee oracle query. The SP protocol is unforgeable
if the DL assumption holds in G1 in the random oracle model. The SP protocol is anonymous if
the DDH assumption holds in G1 in the random oracle model.

7 Performance Analysis

We analyze our PAChain in terms of throughput and latency, two of the most important metrics
for analyzing the performance of a blockchain system. The latency of our PAChain is affected by
the running time of the modules. The throughput of our PAChain is affected by both the running
time of our three modules, and the size of each transaction.

17

Setup Ctp Enc Ctp Dec πtp Proof πtp Verify
Time Time Time Time Time

Our Scheme 53.8s 2.8ms 3.0ms 27.1ms 25.6ms

Paillier Encryption 402.6ms 27.1ms 7.4ms
Table 3. Comparison for transaction privacy for a single output

7.1 Transaction Overhead

In this paper, we consider 128-bit security. The transaction amount is represented by a 64-bit
positive integer (the same setting as Bitcoin and Monero).

For PAChain’s transaction privacy, 64-bit of transaction amount implies that the rangeR = 264.
We can take u = 216 = 65536, ` = 4. The public parameters for transaction privacy is about 2MB.
The size of the ciphertext is 256 bytes. For each transaction output amount, the size of the range
proof πenc is 544 bytes 10. The size of πtp is 64 bytes plus all πenc for all transaction outputs.
For recipient privacy, the size of Crp is 64 bytes, πrp is 256 bytes for each recipient. The block
randomness Rtx,r is 32 bytes. (The 32 bytes of otpkr replaces the output address and hence it is
not viewed as an overhead). For sender privacy, the size of Csp is 64 bytes, πrp is 352 bytes and T
is 32 bytes for each sender.

Considering a classical transaction of 2 inputs and 2 outputs, the overhead for privacy-enhancing
consortium blockchain is 2720 bytes. We compare our PAChain with other schemes in Table 2:

– For consortium blockchain (e.g., Fabric or Corda), the classical transaction of 2 inputs and 2
outputs includes 2 ECDSA signatures from two inputs (128 bytes) and two X.509 certificates
for 2 outputs’ ECDSA public keys (about 500 bytes). The overhead is 628 bytes.

– For the public blockchain Monero, even if we consider the minimum ring size for ring signature
as 3 (i.e., the real sender is one-out-of-three public keys. Hence the anonymity is very limited.),
the total overhead is 12704 bytes for 2 inputs and 2 outputs.

– For Zcash, all the proofs can be combined to a single 288 bytes zk-SNARK proof. The total
proof size becomes 576 bytes. However, the time for generating the proof will be much longer
(> 120 sec) and it requires a lot of RAM (> 3GB). It causes a long latency in the blockchain
system.

7.2 Module Implementation

We implemented our modules in a server with Intel Core i5 3.4GHz, 8GB RAM, running on Linux.
Our implementation is by Golang, using BN256 pairing library.

Transaction Privacy. For transaction privacy, the running time for a single output is shown
in table 3. We compare our scheme with the additive homomorphic Paillier encryption with the
same security level. When comparing with the encryption and decryption part only, our scheme
is about 9 times and 2 times more efficient than the Paillier encryption. For the prover side, the
complete transaction privacy is almost as efficient as a single Paillier encryption. Comparatively,
our scheme takes a longer time for Setup, mainly for the generation of system parameters for the
range proof.

Recipient Privacy. For recipient privacy for a single output, the Setup time is 4.6ms, the Cer-
tIssue time is 1.4ms, the Spend Time is 11.2ms and the Verify time is 10.6ms.

Sender Privacy. For sender privacy for a single input, the Setup time is 7.8ms, the CredIssue
time is 1.5ms, the CredSign Time is 15.0ms and the Verify time is 16.3ms.

For a standard 2-input 2-output transaction, the total running time of our scheme (achieving
all three properties) is 112ms for the prover and 105ms for the verifier side.

10 A 64-bit range proof by the recent Bulletproof [7] is about 800 bytes.

18

7.3 Testing Transaction Privacy with Hyperledger Fabric

We integrate the transaction privacy protocol in Hyperledger Fabric 1.0, in order to demonstrate
our modulus can be consolidated into real world consortium blockchain. There are a few technical
obstacles to implement our scheme. The first obstacle is that Fabric does not support optimization
code of BN256 pairing written in C language. It results in > 10 times slower exponentiation and
pairing computation. We expect future version of Fabric to allow optimization for pairing-based
computation.

The second difficulty is to implement the verification logic into the smart contract (chaincode)
of Fabric. We built a complete flow of transaction, including the creation of money (deposit),
normal transaction, balance query and the destroy of money (withdraw). The chaincode has 2223
lines of codes. The extra codes for server side and client are 575 lines and 1061 lines respectively.
The common module has 823 lines. (Comparatively, the core transaction privacy protocol has 2143
lines of codes.)

Transaction Privacy. In our current implementation for a 2-input 2-output transaction in Hyper-
ledger Fabric 1.0, the signing time is 988ms and the verification time is 1.35s. Our implementation
shows that other processing time for the transaction packet in negligible when compared to cryp-
tographic operations. We expect that if optimization code of pairing is allowed, the signing and
verification time can be about 100ms.

The consensus algorithm is the current bottleneck of most consortium blockchain systems.
The PBFT consensus algorithm used in Hyperledger Fabric 1.0 allows about 2000 transactions
per second and has about 1 second of latency. If optimization is allowed in Fabric, our scheme
has a running time of 100ms for both the prover and verifier side, for a standard 2-input 2-
output transaction. Therefore, our scheme is practical and will not become the bottleneck of the
consortium blockchain system.

8 Conclusion

In this paper, we propose efficient solution for privacy, auditability and authentication in consor-
tium blockchain. We give module solutions for them, so that they can be added to blockchain
according to actual business need. We implemented our schemes and they are more efficient than
the existing solutions in public blockchain.

References

1. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k -taa. In: Prisco, R.D., Yung, M. (eds.) SCN
2006. LNCS, vol. 4116, pp. 111–125. Springer (2006)

2. Bellare, M., Goldwasser, S.: Verifiable partial key escrow. In: Graveman, R., Janson, P.A., Neuman,
C., Gong, L. (eds.) CCS ’97,. pp. 78–91. ACM (1997)

3. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.: Zerocash: Decen-
tralized anonymous payments from bitcoin. In: IEEE SP 2014. pp. 459–474. IEEE Computer Society
(2014)

4. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer (2004)

5. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M.K. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 41–55. Springer (2004)

6. Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer (2000)

7. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Short proofs for
confidential transactions and more. In: IEEE SP 2018. pp. 315–334. IEEE (2018)

8. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership and range proofs.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 234–252. Springer (2008)

9. Camenisch, J., Mödersheim, S., Sommer, D.: A formal model of identity mixer. In: Kowalewski, S.,
Roveri, M. (eds.) FMICS 2010. LNCS, vol. 6371, pp. 198–214. Springer (2010)

19

10. Garman, C., Green, M., Miers, I.: Accountable privacy for decentralized anonymous payments. In:
Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 81–98. Springer (2016)

11. Hyperledger Fabric: Architecture explained (2017), http://hyperledger-
fabric.readthedocs.io/en/latest/arch-deep-dive.html

12. Li, W., Sforzin, A., Fedorov, S., Karame, G.O.: Towards scalable and private industrial blockchains.
In: BCC ’17. pp. 9–14. ACM (2017)

13. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2009), https://bitcoin.org/bitcoin.pdf
14. Noether, S.: Ring signature confidential transactions for monero. Cryptology ePrint Archive, Report

2015/1098 (2015), http://eprint.iacr.org/
15. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.)

EUROCRYPT ’99. LNCS, vol. 1592, pp. 223–238. Springer (1999)
16. Ruffing, T., Moreno-Sanchez, P., Kate, A.: Coinshuffle: Practical decentralized coin mixing for bitcoin.

In: Kutylowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 345–364. Springer (2014)
17. Sun, S., Au, M.H., Liu, J.K., Yuen, T.H.: Ringct 2.0: A compact accumulator-based (linkable ring

signature) protocol for blockchain cryptocurrency monero. In: Foley, S.N., Gollmann, D., Snekkenes,
E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 456–474. Springer (2017)

18. Wüst, K., Kostiainen, K., Capkun, V., Capkun, S.: Prcash: Centrally-issued digital cur-
rency with privacy and regulation. Cryptology ePrint Archive, Report 2018/412 (2018),
https://eprint.iacr.org/2018/412. In FC 2019.

19. Yuen, T.H.: Pachain: Private, authenticated and auditable consortium blockchain. In: Mu, Y., Deng,
R.H., Huang, X. (eds.) CANS 2019. LNCS, vol. 11829, pp. 214–234. Springer (2019)

A Building Our PAChain

We show how to integrate our cryptographic building blocks with the Hyperledger fabric frame-
work. We first describe some modifications for combining our cryptographic building blocks. After
that, we demonstrate the system setup followed by the transaction flow in our privacy-preserving
auditable consortium blockchain, PAChain.

A.1 Combining Our Building Blocks

We use the transaction privacy protocol T, the recipient privacy protocol R and the sender privacy
protocol S to build a secure privacy-enhancing blockchain system. Some non-trivial modifications
are needed when combining our building blocks.

Combining Transaction Privacy with Sender Privacy A small change has to be made
for T.TxPrivacyVerify and S.CredSign. It is because Cin,i = gMin,ih

rin,i
tp and Bin,i = grin,i used for

verification in T.TxPrivacyVerify, while it should be kept private for sender privacy. If we want
to achieve both transaction privacy and sender privacy, we require that they use the same hash
output for the 3-move zero-knowledge proof. Then, we have an extra output in each S.CredSign:

RC,i = grm,ih
rr,i
tp , RB,i = grr,i .

For T.TxPrivacyVerify, the verification equation involving (Cin,i, Bin,i) is changed to:

R′tp = h
ztp
tp ·

n∏
i=1

gzm,ih
zr,i
tp

RC,i
· (

n′∏
j=1

Cout,j)
−c̃′ , R̃′tp = gztp ·

n∏
i=1

gzr,i

RB,i
· (

n′∏
j=1

Bout,j)
−c̃′ .

It is easy to show the soundness and the zero-knowledge property for the above proof of (Cin,i, Bin,i).
We omit it for simplicity. Denote the modified algorithms as S.CredSign’ and T.TxPrivacyVerify’.

Combining Recipient Privacy with Sender Privacy The auditability for sender privacy
S allows the decryption of the sender’s public key in the UTXO. However, recipient privacy R
requires that this public key is a one-time public key. Therefore, the auditability for sender privacy
is indirectly achieved: auditor runs S.Decrypt and gets a one-time public key. From this one-time
public key, the auditor retrieves the UTXO, and runs R.Decrypt to obtain the long-term public
key of the sender.

20

A.2 System Setup and User Registration

This section outlines the system setup and user registration in PAChain. In order to simplify our
description, we use the Hyperledger Fabric framework [11] and add our privacy-preserving and
auditable modulus to it. The modified parts of our scheme are italic and are marked by red colour.
It shows how our modulus can be consolidated into a consortium blockchain.

System Setup. On input a security parameter 1λ, it runs paramT ← T.Setup(1λ), paramR ←
R.Setup(1λ) and paramS ← S.Setup(1λ). Suppose the system parameter param = (paramT , paramS,
paramR) is known to all users in the system.

Endorser Setup. The endorser generates a pair of signing and verification ssk, svk. The endorser
obtains a key pair for sender privacy by running (esk, epk)← S.EndorserKeyGen().

CA Setup. The CA11 obtains a key pair by running (cask, capk)← R.CAKeyGen().

User Registration. The user generates his long-term key pair by running (usk, upk)← R.UserKeyGen().
The user runs R.CertIssue(capk, upk) with the CA and the algorithm outputs cert. If the user is
authorized, the CA returns a certificate cert to the user.

A.3 Transaction Flow

We outline the modified transactional mechanics that take place during a standard transaction.
As in [11], the system hosts smart contracts (called chaincode) that comprise the application logic
of the system. Chaincode holds state and ledger data, and transactions are operations invoked on
the chaincode. Our protocols are mainly added to the client side (TxPropose) and endorser side
(Endorse).

Tx Propose. Consider the case that Alice want to sends $Mout,j to user upkout,j for j ∈ [1, n′].
Suppose that user upkout,j is registered to the CA with certificate certout,j and it is known to Alice.
Denote Alice’s long-term secret key as uskA.

Assume that Alice’s money is obtained from n different transactions of amount Min,i for i ∈
[1, n], where

∑
i∈[1,n]Min,i =

∑
j∈[1,n′]Mout,j . Then for each input amount Min,i, Alice should have

the corresponding one time public key otpkA,i, commitment Cin,i, commitment randomness rin,i,
credential credin,i (issued by endorser Ei) and block randomness Rin,i. Alice prepares a transaction
message tx which includes the following fields:

1. clientID. It includes the endorsers’ IDs Ei for i ∈ [1, n]. 12

2. chaincodeID. It refers to the chaincode to which the transaction pertains.
3. timestamp. It is a monotonically increasing integer maintained by the client.
4. txPayload. It is the payload containing the submitted transaction, composed of 〈source, metadata,

policies〉. source denotes the source code of the chaincode and policies includes the en-
dorsement policy. metadata includes the following:

(a) RecipientPK. For each recipient upkout,j, Alice runs the zero-knowledge protocol for recipient
privacy, without using the part for otsk: (·, otpkout,j, Rtx,out, Crp,j , πrp,j)← R.RecPrivacySpend
(capk, ·, ·, ·, upkout,j , certout,j).
It is because the possession of otsk will later be shown by S.CredSign. Note that for all
j ∈ [1, n′], Alice generates the same Rtx,out output during the computation. The Recipient
PK field includes (otpkout,j , Crp,j , πrp,j) for all j ∈ [1, n′].

(b) Output. Alice generates the output field ({Cout,j}j∈[1,n′], πtp), where: ({Cout,j , rout,j}j∈[1,n′],
πtp)← T.TxPrivacySpend ({Mout,j}j∈[1,n′], {Cin,i, Min,i, rin,i}i∈[1,n]).

(c) Info. Alice puts the block randomness Rtx,out in the information field 13.

11 CA is called membership service provider (MSP) in Fabric.
12 In the Hyperledger Fabric, this field includes the sender ID instead. Hence, it does not provide sender

anonymity.
13 Optionally, Alice can encrypt her long-term public key with (Mout,j , rout,j) to user upkout,j . If this infor-

mation is not sent by blockchain, it can be sent by private channel between Alice and the recipient.

21

5. clientSig. Alice obtains the one-time secret keys of her n inputs by x′in,i ← R.OneTimeSkGen
(otpkA,i, Rin,i, uskA) for i ∈ [1, n]. Alice runs (Csp,i, Ti, πsp,i)← S.CredSign′(x′in,i, otpkA,i, credin,i,
Min,i, rin,i) for all i ∈ [1, n]: Finally, clientSig includes (Csp,i, Ti, πsp,i) for all i ∈ [1, n].

Alice submits a proposal message 〈PROPOSE, tx, [anchor]〉 to the endorsing peers, where anchor is
an optional field containing the version numbers for some keys (of the key-value pairs in chaincode).
The transaction ID tid can be computed as Hash(tx).

Endorse. On reception of a message 〈PROPOSE, tx, [anchor]〉 from a client, the endorser verifies
that:

1. the transaction proposal tx is well-formed,
2. the version number in anchor (if any) matches the current read version number of correspond-

ing keys.
3. the signature clientSig in tx is valid. Instead of checking against sender’s public key upk in

Hyperledger Fabric, our proposal runs for all i ∈ [1, n]:

1/0← S.Verify(epki, Cspi , Ti, πspi),

where epki is the public key of the endorser specified in the field clientID in tx.
4. the proposal does not contain double spending. It runs S.Link(T ∗, T ′) for all (·, T ∗, ·) ∈

clientSig and for all T ′ of the past transactions. If any of them returns 1, it implies double
spending.

5. the recipient is authorized. For all j ∈ [1, n′], it runs: 1/0← B.Verify(capk, ·, ·, otpkout,j , Rtx,out,
Crp,j , πrp,j). We ignore the checking of otsk in B.Verify since it is checked in S.Verify.

6. the transaction amount is correct. It runs:

1/0← T.TxPrivacyVerify′({πsp,i}i∈[1,n], {Cout,j}j∈[1,n′], πtp).

After the checking, the endorser tentatively executes a transaction (txPayload), by invoking the
chaincode with ID chaincodeID and the copy of the state that the endorser locally holds. As
a result of the execution, the endorser computes read version dependencies (readset) and state
updates (writeset). It returns the message 〈TRANSACTION-ENDORSED, tid, tran-proposal, epSig〉
to Alice, where:

– tran-proposal := (epID, tid, chaincodeID, txContentBlob, readset, writeset), with epID

as the endorser ID, and txContentBlob as transaction specific information. In particular, the
endorser runs credout,j ← S.CredIssue(epk, otpkout,j , Cout,j) for all j ∈ [1, n′], with private input
esk. 14 The endorser puts {credout,j}j∈[1,n′] into txContentBlob.

– epSig is the endorser’s signature on tran-proposal by using its signing key ssk.

If in any case the endorser refuses to endorse the transaction, it may send a message 〈TRANSACTION-
INVALID, tid, REJECTED〉 to Alice.

Tx Submit. Alice waits until it receives enough messages and signatures on 〈TRANSACTION-ENDORSED,
tid, ∗, ∗〉 statements to conclude that the transaction proposal is endorsed. The collection of signed
TRANSACTION- ENDORSED messages are denoted as endorsement. Alice invokes the ordering service
with endorsement.

Ordering. The ordering peers run a consensus algorithm with the endorsement they received.
Once an agreement is reached, 〈DELIVER, seqno, prevhash, endorsement〉 is broadcast to all peers.

Tx Commit. Upon receiving 〈DELIVER, seqno, prevhash, endorsement〉, a peer checks: (1) endorsement
is valid according to the policy of the chaincode having ID = endorsement.tran-proposal.chaincodeID;
(2) the dependencies in endorsement.tran-proposal. readset have not been violated mean-
while. If all these checks pass, the transaction is deemed valid or committed. The peer applies
endorsement. tran-proposal.writeset to blockchain state.

14 πci is not needed here, since the transaction includes πrp, which implies the existence of πca in R.CertIssue.
The proof πca is the same as πci.

22

B Security Proofs

B.1 Transaction Privacy

We first prove the security of the proof πenc.

Lemma 1. The zero-knowledge proof πenc is sound if the u-SDH assumption holds in (G1,G2) in
the random oracle model.

Proof. Suppose the simulator is given u Boneh-Boyen signatures on messages 0, . . . , u − 1 for a
public key Ŷ and he wants to break the unforgeability of Boneh-Boyen signature. The simulator
uses these signatures as Ai for i ∈ [0, u−1]. The adversary outputs the ciphertext {Bj , Cj}j∈[0,`−1]
and proof πenc = ({Vj , zµj , zvj , zrj}j∈[0,`−1], c̃). The simulator rewinds c̃ and receives another proof

π′enc = ({Vj , z′µj , z
′
vj , z

′
rj}j∈[0,`−1], c̃′). Then we have:

ê(Vj , Ŷ
c̃−c̃′ · ĝz

′
µj
−zµj) = ê(g, ĝ)

z′vj
−zvj , C c̃−c̃

′

j = g
z′µj
−zµj

0 h
z′rj
−zrj

tp , Bc̃−c̃
′

j = g
z′rj
−zrj .

By setting µ∗j =
z′µj
−zµj
c̃−c̃′ , v∗j =

z′vj
−zvj
c̃−c̃′ , r∗j =

z′rj
−zrj
c̃−c̃′ , we have:

ê(Vj , Ŷ · ĝµ
∗
j)

1
v∗
j = ê(g, ĝ), Cj = g

µ∗j
0 h

r∗j
tp , Bj = gr

∗
j .

The last two equations showed that (Cj , Bj) is a valid ElGamal ciphertext of µ∗j . With non-

negligible probability, µ∗j is not in [0, u − 1]. Then the simulator can return V
1/v∗j
j as the forged

Boneh-Boyen signature on message µ∗j . If the SDH assumption holds in (G1,G2), the proof πenc is
sound. ut

Lemma 2. The zero-knowledge proof πenc is zero-knowledge in the random oracle model.

Proof. The simulator picks some random {Vj , Bj , Cj , zµj , zvj , zrj}j∈[0,`−1], c̃ for the corresponding

domain and computes aj = ê(Vj , Ŷ
c̃ĝ−zµj) · ê(g, ĝ)zvj , Dj = Bc̃jg

zrj , Ej = C c̃j g
zµj
0 h

zrj
tp The simu-

lator sets c̃ as H(param, {Vj , aj , Bj , Cj , Dj , Ej}j∈[0,`−1]) in the random oracle model. Hence, the
proof πenc is zero knowledge about the Tx amount. ut

Then, we can give the security of our transaction privacy protocol. The property of soundness
follows from Lemma 1. The privacy of the transaction amount is straightforward following the
IND-CPA security of the underlying ElGamal encryption (for Cenc) and Lemma 2 for the zero-
knowledge property of πenc.

Proof of Balance.

Proof. Suppose the simulator is given the DL problem instance (g′, y′) and sets g0 = y′, htp = g′.

The simulator picks a random asktp ∈ Zp and computes g = h
1/asktp
tp . The simulator honestly runs

the rest of Setup and generates param. It gives param and asktp to the adversary, and answers all
Spend oracle queries.

In the challenge phase, the adversary outputs Cin,i for i ∈ [1, n], Cout,j for j ∈ [1, n′] and a
proof πtp = (ztp, c̃

′, {πenc,j}j∈[1,n′]). The simulator rewinds c̃′ to c̃′2 and obtains ztp,2. Therefore we
have:

h
ztp
tp (

n∏
i=1

C ′in,i/

n′∏
j=1

C ′out,j)
c̃′ = h

ztp,2
tp (

n∏
i=1

C ′in,i/

n′∏
j=1

C ′out,j)
c̃′2 ,

gztp(
n∏
i=1

B′in,i/

n′∏
j=1

B′out,j)
c̃′ = gztp,2(

n∏
i=1

B′in,i/

n′∏
j=1

B′out,j)
c̃′2 ,

23

Denote x∗tp =
ztp−ztp,2
c̃′2−c̃′

. Then

n∏
i=1

C ′in,i/

n′∏
j=1

C ′out,j = h
x∗tp
tp ,

n∏
i=1

B′in,i/

n′∏
j=1

B′out,j = gx
∗
tp .

By the soundness of {πenc,j}j∈[1,n′], B′out,j = grout,j , C ′out,j = g
Mout,j

0 h
rout,j
tp for all j ∈ [1, n′], and

the value of Mout,j , rout,j can be extracted. Also from the Spend oracle queries, we have C ′in,i =

g
Min,i

0 h
rin,i
tp , B′in,i = grin,i for all i ∈ [1, n]. If

∑n
i=1Min,i 6=

∑n′

j=1Mout,j , we have

g
∑n
i=1Min,i−

∑n′
j=1Mout,j

0 h
∑n
i=1 rin,i−

∑n′
j=1 rout,j

tp = h
x∗tp
tp .

Then the simulator extract logg′ y
′ = loghtp

g0 =
x∗tp−

∑n
i=1 rin,i−

∑n′
j=1 rout,j∑n

i=1Min,i−
∑n′
j=1Mout,j

as the answer to the DL

problem. ut

B.2 Recipient Privacy

Proof of Soundness.

Proof. The simulator is given the q-SDH problem instance. It randomly picks w1, . . . , wq−1, ι1,

ι2, f
′, w′ ∈ Zp and sets h2 = g

∏q−1
i=1 (β+wi)

1 , g3 = h
(w′+β)f′−1

ι2
2 , g2 = gι13 , Ŵ2 = ĝβ2 . The rest of param

are generated as in Setup.
The oracles are simulated as follows:

– KeyGen(): The simulator runs (usk, upk)← UserKeyGen(), stores (usk, upk) in a list L (which
is initially empty) and outputs upk.

– Corrupt(upk): On input upk, it searches (usk, upk) ∈ L and returns usk. It returns ⊥ if no such
key is found.

– Issue(upk): On i-th distinct input upki = (Yi,1, Yi,2), the simulator uses the extractor of the ZK
proof πca to obtain xi,1 = logg2 Yi,1. Without loss of generality, assume the simulator assigns
wi to the i-th query for i ∈ [1, q − 1] and sets wq = w′. For the query with i ∈ [1, q − 1], it
picks a random si ∈ Zp and uses wi to compute:

Fi = (h2 · Yi,1 · gsi3)
1

β+wi = g
(1+(ι1+sixi,1)· (w

′+β)f′−1
ι2

)
∏q−1
j=1,j 6=i(β+wj)

1 .

The oracle returns the certificate certi = (Fi, wi, si).

For the query with i = q, it sets s′ =
ι2−xq,1
ι1

and F ′ = hf
′

2 . The oracle returns the certificate
certq = (F ′, w′, s′).

– Spend(upks, otpks, Rtx,s, upkr, certr): For each Spend oracle query to any public key upkr with
certificate certr from some public key upks corresponding to (otpks, Rtx,s), it runs as fol-
lows: (1) The simulator runs the simulator of the zero-knowledge proof πotsk. (2) It gen-
erates otpkr, Rtx,r and rtx as in the OneTimePkGen protocol. (3) It generates Crp =
(Ccert, Bcert) as in the protocol. (4) It picks some πrp = (c,Θ, zω, zτ , zρ, zc, zσ, zs) in the cor-
responding domains and calculates Rcert,1, Rcert,2, Rcert,3, Rcert,4 as in ZKReconstruct. It
sets the random oracle c′ = H(CertAuth.mpk, Crp, Θ, Rcert,1, Rcert,2, Rcert,3, Rcert,4). It outputs
πotsk, otpks, otpkr, Rtx,r, Bcert, Ccert and πrp.

In the challenge phase, the adversary outputs two valid transactions where otpk∗ is the recipient
of the first Tx and otpk∗ is the sender of the second Tx. In the second Tx, the adversary spends
the money of otpk∗ by using π∗otsk. The simulator can decrypt C∗rp of the first Tx and obtains Y ∗1 .
If the adversary wins the game, upk∗ = (Y ∗1 , ·) should not be input to both the Issue oracle, and
(upk∗, otpk∗, R∗tx, ·, ·) should not be queried to the Spend oracle.

24

Denote the first Tx output is (πotsk, otpks, otpk∗, R∗tx, C∗rp, π
∗
rp) and denote C∗rp = (Ccert, Bcert),

π∗rp = (c,Θ, zω, zτ , zρ, zc, zσ, zs). The simulator rewinds c and receives another proof π′rp =
(c′, Θ, z′ω, z

′
τ , z
′
ρ, z
′
c, z
′
σ, z
′
s). Then we have:

ê((h2 · Ccert)
zρ−z′ρg

z′s−zs
3 Θz

′
ω−zωh

z′σ−zσ
rp , ĝ2) = ê(Θ, Ŵ2)c

′−c,

Bc−c
′

cert = gzc−z
′
c , B

zρ−z′ρ
cert = gzσ−z

′
σ , h

zc−z′c
rp g

z′τ−zτ
2 = (Ccert/otpk∗)c

′−c.

By setting ρ∗ =
z′ρ−zρ
c−c′ , w

∗ =
z′w−zw
c−c′ , σ

∗ =
z′σ−zσ
c−c′ , r

∗
cert =

z′c−zc
c−c′ , h

∗
tx =

z′τ−zτ
c−c′ , s

∗ =
z′s−zs
c−c′ , we have:

ê((h2 · Ccert)
ρ∗gs

∗

3 Θ
−w∗h−σ

∗

rp , ĝ2) = ê(Θ, Ŵ2), (1)

Bcert = gr
∗
cert , (2)

Bρ
∗

cert = gσ
∗
, (3)

Ccert = otpk∗ · hr
∗
cert

rp g
−h∗tx
2 . (4)

From Eq. 2 and 3, we have σ∗ = ρ∗r∗cert. Putting it and Eq. 4 back to Eq. 1, we have:

ê((h2 · Ccert)
ρ∗gs

∗

3 Θ
−w∗h

−ρ∗r∗cert
rp , ĝ2) = ê(Θ, Ŵ2),

ê(h2 · otpk∗ · g−h
∗
tx

2 · gs
∗

3 , ĝ2) = ê(Θ
1
ρ∗ , ĝw

∗

2 Ŵ2).

If the adversary wins the game, it means that he can spend the money of otpk∗ by issusing a
zero-knowledge proof π∗otsk of otsk∗ = logg2 otpk∗. Since (upk∗, otpk∗, R∗tx, ·, ·) was not be queried
to the Spend oracle, π∗otsk was not from the output of the simulated oracle query. By using the
extractor of π∗otsk, the simulator can extract otsk∗. Then:

ê(h2 · g
otsk∗−h∗tx
2 · gs

∗

3 , ĝ2) = ê(Θ
1
ρ∗ , ĝw

∗

2 Ŵ2),

ê(g
(1+(ι1(otsk

∗−h∗tx)+s
∗)

(β+w′)f′−1
ι2

)
∏q−1
i=1 (β+wi)

1 , ĝ2) = ê(Θ
1
ρ∗ , ĝβ+w

∗

2).

Denote the polynomial
(1+(ι1(otsk

∗−h∗tx)+s
∗)

(β+w′)f′−1
ι2

)
∏q−1
i=1 (β+wi)

β+w∗ as
∑q−2
i=0 Ziβ

i+ Z−1

β+w∗ for some
coefficients Z−1, Z0, . . ., Zq−2 ∈ Zp which can be computed by the simulator. Then we have:

ê(g
∑q−2
i=0 Ziβ

i+
Z−1
β+w∗

1 , ĝβ+w
∗

2) = ê(Θ
1
ρ∗ , ĝβ+w

∗

2),

ê(Θ
1
ρ∗ g
−

∑q−2
i=0 Ziβ

i

1 , ĝβ+w
∗

2) = ê(g
Z−1

1 , ĝ2).

If Z−1 6= 0, the simulator can compute A∗ = (Θ
1
ρ∗ g
−

∑q−2
i=0 Ziβ

i

1)
1

Z−1 . It returns (A∗, w∗) as the
solution to the q-SDH problem.

If Z−1 = 0, it implies that w∗ = wi for some i-th Issue oracle output in the past. With proba-
bility 1−1/q, w∗ 6= w′. Denote such oracle input is upki = (Yi,1, ·) and output is (Fi, w

∗, si). Then

we have ê(h2 ·g
xi,1
2 ·gsi3 , ĝ2) = ê(Fi, ĝ

w∗

2 Ŵ2). Recall that ê(h2 ·g
otsk∗−h∗tx
2 ·gs∗3 , ĝ2) = ê(Θ

1
ρ∗ , ĝw

∗

2 Ŵ2).

If Θ
1
ρ∗ = Fi, then we have s∗ = si and otsk∗ − h∗tx = xi,1 if the DL assumption holds between

g2 and g3. Recall that the decryption of (Ccert, Bcert) gives Y ∗1 if the adversary wins the game. By

Eq. 2 and 4, we have Y ∗1 = otpk∗g
−h∗tx
2 . By the soundness of zero-knowledge proof π∗otsk, we have

otsk∗ = logg2 otpk∗. It implies that Y ∗1 = g
xi,1
2 , which contradicts that Y ∗1 is never queried to the

Issue oracle.
If Z−1 = 0, w∗ = wi and Θ

1
ρ∗ 6= Fi for some i, we show that the simulator can also solve the

q-SDH. With probability 1/q, w∗ = w′. Then denote F ∗ = Θ
1
ρ∗ and y∗ = ι1(otsk∗ − h∗tx) + s∗ :

F ∗β+w
∗

= h2g
otsk∗−h∗tx
2 · gs

∗

3 = h2g
ι1(otsk

∗−h∗tx)+s
∗

3 = h2g
y∗

3 = h
1+y∗· (w

′+β)f′−1
ι2

2 ,

F ∗ = h
ι2−y

∗+y∗f′(β+w′)
ι2(β+w′)

2 = h
ι2−y

∗

ι2(β+w′)+
y∗f′
ι2

2 ,

(F ∗h
−y∗f′
ι2

2)
ι2

ι2−y∗ = h
1

β+w′

2 = g

∏q−1
i=1

(β+wi)

β+w′

1

25

Denote the polynomial
∏q−1
i=1 (β+wi)

β+w′ =
∑q−2
i=0 Z

′
iβ
i +

Z′−1

β+w′ for some coefficients Z ′−1, Z
′
0, . . . , Z

′
q−2 ∈

Zp which can be computed by the simulator. Note that Z ′−1 6= 0 in this case since the simulator

sets w′ 6= wi for all i. Then the simulator can compute A′ = [(F ∗h
−y∗f′
ι2

2)
ι2

ι2−y∗ g
−

∑q−2
i=0 Z

′
iβ
i

1]
1

Z′−1 . It
returns (A′, w′) as the solution to the q-SDH problem. ut

Proof of Anonymity.

Proof. In the output of the challenge phase, the simulator runs RecPrivacySpend for some
challenge recipient upkr = (Y1, Y2), where:

– π∗otsk is not related to the recipient.
– C∗rp = (Ccert, Bcert) is the ElGamal encryption of Y1 to the auditor. It does not provide infor-

mation of Yr if the DDH assumption holds in G1.

– Observe that otpk∗r = Y1g
H(Y

rtx,r
2)

2 and R∗tx,r = g
rtx,r
2 . Assume H is a secure hash function

(the pseudorandomness of output) and the CDH assumption holds in G1 (for the computation
from the Diffie-Hellman tuple), otpk∗r , R

∗
tx,r does not provide information of upkr.

– For π∗rp, the simulator picks some (c,Θ, zω, zτ , zρ, zc, zσ, zs) in the corresponding domains and
calculates Rcert,1, Rcert,2, Rcert,3, Rcert,4 as in ZKReconstruct. It sets the random oracle c′ =
H(CertAuth.mpk, C∗rp, Θ, Rcert,1, Rcert,2, Rcert,3, Rcert,4). Hence, π∗rp does not provide information
of upkr.

Hence, the adversary has no advantage of winning the anonymity game if the DDH assumption
holds in G1 in the random oracle model. ut

B.3 Sender Privacy

Proof of Soundness.

Proof. The simulator is given the q-SDH problem instance (g0, g
α
0 , g

α2

0 , . . . , gα
q

0 , ĝ2, ĝ
α
2). It ran-

domly picks z1, . . . , zq−1, ι1, ι2, ι3, ι4, a
′, z′ ∈ Zp and sets hs = g

∏q−1
i=1 (α+zi)

0 , g1 = h
(z′+α)a′−1

ι2
s , g2 =

gι11 ,Wsp = ĝα2 , g = gι31 , htp = gι41 . The rest of param and asksp are generated as in Setup. It sets
epk = Wsp. The adversary is given param, asksp and epk.

The oracles are simulated as follows:

– Issuee(upk): On k-th distinct input upkk = (Yk,1, ·) and a ciphertext Ck, the simulator uses
the extractor of the ZK proof πca to obtain xk,1 = logg Yk,1 and the extractor of the ZK proof

πtp to obtain Ck = gmkh
rtp,k
tp . Without loss of generality, assume the simulator assigns zk to

the k-th query for k ∈ [1, q − 1] and sets zq = z′. For the query with k = [1, q − 1], it picks a
random vk ∈ Zp and uses zk to compute:

Ak = (hs · gvk1 · gmkh
rtp,k
tp · Yk,1)

1
α+zk = (g

1+(vk+ι3mk+ι4rtp,k+ι1xk,1)· (z
′+α)a′−1
ι2

0)

∏q−1
j=1

(α+zj)

α+zk

= g
(1+(vk+ι3mk+ι4rtp,k+ι1xk,1)· (z

′+α)a′−1
ι2

)
∏q−1
j=1,j 6=i(α+zj)

0 .

The oracle returns the certificate certk = (Ak, zk, vk).
For the q-th query, it sets v′ = ι2 − ι3mq − ι4rtp,q − ι1xq,1 and A′ = ha

′

2 . The oracle returns
the certificate certq = (A′, z′, v′).

– Sign(upk, usk,m, r): On input a sender’s public key upk, secret key usk, the input transaction
amount m encrypted with randomness r, it firstly denote upk = (Y ′in, ·). The simulator hon-
estly computes Csp, T, Ξ and picks some random S ∈ G. The simulator picks some random
c, zk, za, zz, zb, zv, zm, zr, zψ ∈ Zp. It then computesRcred,1, Rcred,2, Rcred,3, Rcred,4, Rcred,5, Rcred,6

as in ZKReconstruct. It sets c = H(CredAuth.mpk, Csp, T , S,Ξ,Rcred,1, Rcred,2, Rcred,3, Rcred,4,
Rcred,5, Rcred,6) in the random oracle model. Denote πsp = (c, S,Ξ, zk, za, zz, zb, zv, zm, zr, zψ).
Then it outputs (Csp, T, πsp).

26

In the challenge phase, the adversary outputs (C∗sp = (C∗cred, B
∗
cred), T

∗, π∗sp). The simulator can
decrypt C∗sp and obtains Y ∗in . If the adversary wins the game, then Y ∗in should not be input to the
Issuee oracle and (C∗sp, T

∗, π∗sp) should not be the output to the Sign oracle.
For the same B∗cred, C

∗
cred, T

∗ and commitment (S∗, Ξ∗, R∗cred,1, R
∗
cred,2, R

∗
cred,3, R

∗
cred,4, R

∗
cred,5,

R∗cred,6), suppose the simulator rewinds and has two challenges c and c′ and two corresponding
responses (zk, za, zz, zb, zv, zm, zr, zψ) and (z′k, z

′
a, z
′
z, z
′
b, z
′
v, z
′
m, z

′
r, z
′
ψ). We have:

ê(uzb1 S
∗−zzgzv1 g

zmhzrtp g
zk
2 , ĝ2) · ê(uza1 ,Wsp) · [ê(hs, ĝ2) · ê(S∗−1,Wsp)]

c

= ê(uzb1 S
∗−z′zg

z′v
1 g

z′mh
z′r
tp g

z′k
2 , ĝ2) · ê(uz

′
a

1 ,Wsp) · [ê(hs, ĝ2) · ê(S∗−1,Wsp)]
c′ ,

gza1 ·Ξ∗
−c = g

z′a
1 ·Ξ∗

−c′ ,

Ξ∗zxg−zb1 = Ξ∗z
′
xg
−z′b
1 ,

gzψ ·B∗cred
−c = gz

′
ψ ·B∗cred

−c′ ,

gzk2 h
zψ
sp C

∗
cred
−c = g

z′k
2 h

z′ψ
sp C

∗
cred
−c′ ,

fzk · T ∗−c = fz
′
k · T ∗−c

′
.

Denote x∗ =
zk−z′k
c−c′ , a∗ =

za−z′a
c−c′ , z∗ =

zz−z′z
c−c′ , b∗ =

zb−z′b
c−c′ , v∗ =

zv−z′v
c−c′ , m∗ =

zm−z′m
c−c′ , r∗in =

zr−z′r
c−c′ ,

r∗cred =
zψ−z′ψ
c−c′ .

Then we have:

ê(ub
∗

1 S
∗−z∗gv

∗

1 gm
∗
h
r∗in
tp g

x∗

2 , ĝ2) · ê(ua
∗

1 ,Wsp) = ê(hs, ĝ2)−1 · ê(S∗,Wsp),

Ξ∗ = ga
∗

1 ,

Ξ∗z
∗

= gb
∗

1 ,

B∗cred = gr
∗
cred ,

C∗cred = gx
∗

2 h
r∗cred
sp ,

T ∗ = fx
∗
.

From the second and the third equation, we have b∗ = a∗z∗. From the fourth and the fifth
equation, we can see that (C∗cred, B

∗
cred) is the ciphertext of gx

∗

2 encrypted to the auditor. From the
last equation, we can see that T ∗ = fx

∗
. From the first equation, we have:

ê(hsg
v∗

1 gm
∗
h
r∗in
tp g

x∗

2 , ĝ2) = ê(S∗z
∗
u−b

∗

1 , ĝ2) · ê(S∗u−a
∗

1 ,Wsp)

ê(h
1+

(z′+α)a′−1
ι2

(v∗+ι3m
∗+ι4r

∗
in+ι1x

∗)
s , ĝ2) = ê(S∗u−a

∗

1 , ĝz
∗

2 ·Wsp).

Denote the polynomial
(1+

(z′+α)a′−1
ι2

(v∗+ι3m
∗+ι4r

∗
in+ι1x

∗))
∏q−1
j=1 (α+zj)

α+z∗ =
∑q−2
j=0 Zjα

j + Z−1

α+z∗ for some
coefficients Z−1, Z0, . . ., Zq−2 ∈ Zp which can be computed by the simulator. Then we have:

ê(g
∑q−2
j=0 Zjα

j+
Z−1
α+z∗

0 , ĝα+z
∗

2) = ê(S∗u−a
∗

1 , ĝα+z
∗

2),

ê(S∗u−a
∗

1 g
−

∑q−2
j=0 Zjα

j

0 , ĝα+z
∗

2) = ê(g
Z−1

0 , ĝ2).

If Z−1 6= 0, the simulator can compute A∗ = (S∗u−a
∗

1 g
−

∑q−2
j=0 Zjα

j

0)
1

Z−1 . It returns (A∗, z∗) as
the solution to the q-SDH problem.

If Z−1 = 0, it implies that z∗ = zk for some k-th Issuee oracle output in the past. With
probability 1 − 1/q, z∗ 6= z′. Denote such oracle input extracted the value of (mk, rk, xk) and
the output is (Ak, z

∗, vk). Then we have ê(hsg
vk
1 gmkhrktp g

xk
2 , ĝ2) = ê(Ak, ĝ

z∗

2 Wsp). Recall that

ê(hsg
v∗

1 gm
∗
h
r∗in
tp g

x∗

2 , ĝ2) = ê(S∗u−a
∗

1 , ĝz
∗

2 Wsp). If Ak = S∗u−a
∗

1 , then we have v∗ = vk,m
∗ =

27

mk, r
∗ = rk and x∗ = xk if the discrete logarithm assumption holds between g, g1, g2 and htp.

Recall that the decryption of (C∗cred, B
∗
cred) gives gx

∗

2 if the adversary wins the game. However,
x∗ = xk contradicts that gx

∗

2 is never queried to the Issuee oracle.

If Z−1 = 0, z∗ = zk and Ak 6= S∗u−a
∗

1 for some k-th Issuee oracle output in the past, we
show that the simulator can also solve the q-SDH. With probability 1/q, z∗ = z′. Then denote

A∗ = S∗u−a
∗

1 and y∗ = v∗ + ι3m
∗ + ι4r

∗
in + ι1x

∗ :

A∗α+z
∗

= hsg
v∗

1 gm
∗
h
r∗in
tp g

x∗

2 = hsg
v∗+ι3m

∗+ι4r
∗
in+ι1x

∗

1 = hsg
y∗

1 = h
1+y∗· (z

′+α)a′−1
ι2

s ,

A∗ = h
ι2−y

∗+y∗a′(α+z′)
ι2(α+z′)

s = h
ι2−y

∗

ι2(α+z′)+
y∗a′
ι2

2 ,

(A∗h
−y∗a′
ι2

2)
ι2

ι2−y∗ = h
1

α+z′
2 = g

∏q−1
i=1

(α+zi)

α+z′
0

Denote the polynomial
∏q−1
i=1 (α+zi)

α+z′ =
∑q−2
i=0 Z

′
iα
i +

Z′−1

α+z′ for some coefficients Z ′−1, Z
′
0, . . . , Z

′
q−2 ∈

Zp which can be computed by the simulator. Note that Z ′−1 6= 0 in this case since the simulator

sets z′ 6= zi for all i. Then the simulator can compute A′ = [(A∗h
−y∗a′
ι2

2)
ι2

ι2−y∗ g
−

∑q−2
i=0 Z

′
iα
i

0]
−1

Z′−1 . It
returns (A′, w′) as the solution to the q-SDH problem. ut

Proof of Unforgeability.

Proof. The simulator is given the DL problem instance (g0, y0). It picks a random δ ∈ Zp and sets
g2 = g0, f = gδ0. The rest of param, asksp, epk, esk are honestly generated and are given to the
adversary.

The oracles are simulated as follows:

– KeyGen(): The simulator runs (usk, upk)← UserKeyGen(), stores (usk, upk) in a list L (which
is initially empty) and outputs upk. Except for one time, the simulator picks a random Y2 ∈ G
and returns upk = (y0, Y2) and puts (⊥, upk) in L.

– Corrupt(upk): On input upk, it searches (usk, upk) ∈ L and returns usk. It declares failure and
exits if upk = (y0, Y2).

– Issueu(upk): On input upk, it searches (usk, upk) ∈ L and runs Issue honestly as the user. If
upk = (y0, Y2), it runs the simulator of the zero-knowledge proof πci to obtain a proof without
the knowledge of the corresponding secret key.

– Sign(upk, cred,m, r): on input a sender’s public key upk, credential cred for the input trans-
action amount m encrypted with randomness r, it searches (usk, upk) ∈ L. If upk 6= (y0, Y2),
it runs the CredSign honestly. If upk = (y0, Y2), the simulator honestly computes Csp, S, Ξ
and sets T = yδ0. The simulator picks some random c, zk, za, zz, zb, zv, zm, zr, zψ ∈ Zp. It
then computes Rcred,1, Rcred,2, Rcred,3, Rcred,4, Rcred,5, Rcred,6 as in ZKReconstruct. It sets c =
H(CredAuth.mpk, Csp, T, S,Ξ,Rcred,1, Rcred,2, Rcred,3, Rcred,4, Rcred,5, Rcred,6) in the random or-
acle model. Denote πsp = (c, S,Ξ, zk, za, zz, zb, zv, zm, zr, zψ). Then it outputs (Csp, T, πsp).

In the challenge phase, the adversary outputs (C∗sp = (C∗cred, B
∗
cred), T

∗, π∗sp). The simulator can
decrypt C∗sp and obtains Y ∗in . If the adversary wins the game, then Y ∗in should not be input to the
Corrupt oracle and (C∗sp, T

∗, π∗sp) should not be the output to the Sign oracle.

Similar to the soundness proof, the simulator rewinds and extract some x∗, r∗cred such that

C∗cred = gx
∗

2 h
r∗cred
sp , B∗cred = gr

∗
cred .

Suppose there are qc queries to the KeyGen oracle. With probability 1/qc, Y
∗
in = y0. In this case,

the simulator can return x∗ as the solution to the DL problem. ut

28

Proof of Anonymity.

Proof. The simulator is given the DDH problem instance (g0, g
a
0 , g

b
0, Z) and to decide if Z = gab0 .

It picks a random δ1, δ2 ∈ Zp and sets g = g0, g2 = gδ20 , hsp = ga0 , f = gaδ10 . The rest of param, epk,
esk are honestly generated and are given to the adversary.

– KeyGen(): The simulator runs (usk, upk)← UserKeyGen(), stores (usk, upk) in a list L (which
is initially empty) and outputs upk. Except for one time, the simulator picks a random Y2 ∈ G
and returns upk∗ = (gb0, Y2) and puts (⊥, upk∗) in L.

– Corrupt(upk): On input upk, it searches (usk, upk) ∈ L and returns usk. It declares failure and
exits if upk = upk∗.

In the challenge phase, the adversary A1 outputs {upk∗i , cred∗i ,m
∗
i , r
∗
i }i∈[0,1]. If both upk∗0 6= upk∗

and upk∗1 6= upk∗, the simulator declares failure and exits. Without loss of generality, assume
upk∗0 = upk∗. The simulator picks some random renc ∈ Zp and computes C∗sp = (C∗cred, B

∗
cred), T

∗,
where:

B∗cred = (gb0)renc , C∗cred = (gb0)δ2Zrenc , T ∗ = Zδ1 .

The simulator picks some random S∗, Ξ∗ ∈ G and c∗, z∗k, z
∗
a, z
∗
z , z
∗
b , z
∗
v , z
∗
m, z

∗
r , z
∗
ψ ∈ Zp. It then com-

putesR∗cred,1, R
∗
cred,2, R

∗
cred,3, R

∗
cred,4, R

∗
cred,5, R

∗
cred,6 as in ZKReconstruct. It sets c∗ = H(CredAuth.mpk,

C∗sp, T
∗, S∗, Ξ∗, R∗cred,1, R

∗
cred,2, R

∗
cred,3, R

∗
cred,4, R

∗
cred,5, R

∗
cred,6) in the random oracle model. Denote

π∗sp = (c∗, S∗, Ξ∗, z∗k, z
∗
a, z
∗
z , z
∗
b , z∗v , z

∗
m, z

∗
r , z
∗
ψ). Then it returns (C∗sp, T

∗, π∗sp) to the adversary A2.

If the adversary outputs the correct guess of upk∗, then the simulator outputs Z = gab0 to the
DDH problem. Otherwise, the simulator outputs Z 6= gab0 to the DDH problem. ut

29

